• Title/Summary/Keyword: GGBS

Search Result 113, Processing Time 0.026 seconds

Practical Application of GGBS-Based Alkali-Activated Binder to Secondary Products of Concrete (고로슬래그 기반 알카리 활성 결합재의 콘크리트 2차 제품 적용성 평가)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • This study examined the practical application of ground granulated blast-furnace slag (GGBS) based alkali-activated (AA) binders for the development of cementless environmental-friendly secondary products of concrete, such as brick, shore protection blocks and interlocking blocks. The addition amount and type of alkaline ion to activate GGBS varied according to the diverse qualities of the secondary products of concrete required in Korean industrial standards (KS) and other specifications. Test results showed that the secondary products of concrete using GGBS-based AA binders surpassed the demanded capacities of KS and other specifications. In addition, shore protection block had a pH value close to neutral, enabling an advantageous environment for marine life. Therefore, the GGBS-based AA binders can be effectively applied to develop eco-friendly secondary products of concrete with reduced $CO_2$.

Compressive Behavior of Reinforced Nylon Fiber Slag-CB (나일론 섬유 보강 Slag-CB의 압축거동 특성)

  • Younkyoung Lee;Taeyeon Kim;Jongkyu Lee;Youngsoo Joo;Bongjik Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.5-10
    • /
    • 2023
  • Slag-CB is widely used in various fields that require groundwater control. It is a type of CB where a portion of the cement mixed with CB is replaced with GGBS. In general, Slag-CB has the advantage of long-term improvement in compressive strength, permeability, durability, and chemical resistance as the GGBS replacement ratio increases. However, there are problems such as decreased flexibility and resistance to deformation of the cut-off walls, as well as brittleness upon failure. To address these problems, some quality standards recommend designing Slag-CB with lower strength, which makes it challenging to apply high-strength Slag-CB with a high GGBS replacement ratio in the field.In this study, we aimed to improve the flexibility and resistance to deformation of Slag-CB to prevent brittle failure and improve the field applicability of Slag-CB. To achieve this, we evaluated the compressive behavior of nylon fiber-reinforced Slag-CB and proposed measures for enhancing the flexibility and resistance to deformation of Slag-CB.

An Investigation on the Strength Properties and Fluidity of Concrete with various Disign Strength according to Ground Granulated Blast Furnace Slag contents (설계강도가 다른 고강도콘크리트의 고로슬래그 대체율에 따른 유동성 및 강도발현특성 검토)

  • Choi, Sun-Mi;Lee, Gun-Su;Lee, Bum-Sik;Kim, Sang-Yun;Bae, Kee-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.837-840
    • /
    • 2008
  • This study was achieved experiment to evaluate effect on fluidity and strength development ratio by slag replacement ratio to $40{\sim}100MPa$ HSC(High Strength Concrete) containing blast furnace slag(GGBS) and fly-ash(FA). Also it was suggested that most suitable replacement ratio of GGBS is effect by strength. The mix plan of concrete used in an experiment was used to the GGBS replacement ratio of 0, 12, 25% as the cement materials, and fly ash was used equally by replacement ratio 15%. According to test results, for use GGBS with fly ash as binder, slump of GGBS replacement ratio 25% is the most superior in 40MPa series, and appeared by thing which slump flow of GGBS 12% is the most superior in 60, 80MPa's series. The other side, was expressed that fluidity is excellent by FA replacement ratio 15% in 100MPa series. In the case of compressive strength 40MPa, it was exposed that the strength revelation is effect in until the GGBS principal parts ratio increases by replacement ratio 25%. Also, it was exposed that GGBS mixing ratio more than replacement ratio 25% is not since fitness in high strength concrete more than 100MPa.

  • PDF

Classification of Alkali Activated GGBS Mortar According to the Most Suitable Usage at the Construction Site

  • Thamara, Tofeti Lima;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The usage of OPC-free alkali activated ground granulated blast furnace slag(GGBS) mortar has been widely studied on the previous years, due to its advantages on sustainability, durability and workability. This paper brings a new view, aiming to classify the best application in situ for each mortar, according to the type and activator content. By this practical implication, more efficiency is achieved on the construction site and consequently less waste of materials. In order to compare the different activators, the following experiments were performed: analysis of compressive strength at 28 days, setting time measured by needles penetration resistance, analysis of total pore volume performed by MIP and permeability assessment by RCPT test. In general, activated GGBS had acceptable performance in all cases compared to OPC, and remarkable improved durability. Following the experimental results, it was confirmed that each activator and different concentrations impose distinct outcome performance to the mortar which allows the classification. It was observed that the activator Ca(OH)2 is the most versatile among the others, even though it has limited compressive strength, being suitable for laying mortar, coating/plaster, adhesive and grouting mortar. Samples activated with NaOH, in turn, presented in general the most similar results compared to OPC.

Effect of fly ash and GGBS combination on mechanical and durability properties of GPC

  • Mallikarjuna Rao, Goriparthi;Gunneswara Rao, T.D.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.313-330
    • /
    • 2017
  • Geopolymer is a sustainable concrete, replaces traditional cement concrete using alternative sustainable construction materials as binders and alkaline solution as alkaline activator. This paper presents the strength characteristics of geopolymer concrete (GPC) developed with fly ash and GGBS as binders, combined Sodium silicate ($Na_2SiO_3$) and Sodium Hydroxide (NaOH) solution as alkaline activators. The parameters considered in this research work are proportions of fly ash and GGBS (70-30 and 50-50), curing conditions (Outdoor curing and oven curing at $600^{\circ}C$ for 24 hours), two grades of concrete (GPC20 and GPC50). The mechanical properties such as compressive strength, split tensile strength and flexural strength along with durability characteristics were determined. For studying the durability characteristics of geopolymer concrete 5% $H_2SO_4$ solutions was used and the specimens were immersed up to an exposure period of 56 days. The main parameters considered in this study were Acid Mass Loss Factor (AMLF), Acid Strength Loss Factor (ASLF) and products of degradation. The results conclude that GPC with sufficient strength can be developed even under Outdoor curing using fly ash and GGBS combination i.e., without the need for any heat curing.

Technical and economical feasibility of using GGBS in long-span concrete structures

  • Tang, Kangkang;Millard, Steve;Beattie, Greg
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • China accounts for nearly half of the global steel production. As a waste material or a by-product in the manufacture process, a large amount of blast furnace slag is generated every year. The majority of recycled blast furnace slag is used as an additive in low-grade blended cement in China (equivalent to the UK CEM II or CEM III depending on the slag content). The cost of using ground granulated blast furnace slag (GGBS) in such low-grade applications may not be entirely reimbursed based on market research. This paper reports an on-going project at Xi'an Jiaotong-Liverpool University (XJTLU) which investigates the feasibility of using GGBS in long-span concrete structures by avoiding/reducing the use of crack control reinforcement. Based on a case study investigation, with up to 50% of CEM I cement replaced with GGBS, a beneficiary effect of reduced thermal contraction is achieved in long-span concrete slabs with no significant detrimental effect on early-age strengths. It is believed that this finding may be transferable from China to other Asian countries with similar climates and economic/environmental concerns.

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

Corrosion of Steel in Blended Concretes Containing OPC, PFA, GGBS and SF

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.171-176
    • /
    • 2009
  • The chloride threshold level (CTL) in mixed concrete containing, ordinary Portland cement (OPC), pulverized fuel ash (PFA) ground granulated blast furnace slag (GGBS), and silica fume (SF) is important for study on corrosion of reinforced concrete structures. The CTL is defined as a critical content of chloride at the steel depth of the steel which causes the breakdown of the passive film. The criterion of the CTL represented by total chloride content has been used due to convenience and practicality. In order to demonstrate a relationship between the CTL by total chloride content and the CTL by free chloride content, corrosion test and chloride binding capacity test were carried out. In corrosion test, Mortar specimens were cast using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder. All specimens were cured 28 days, and then the corrosion rate was measured by the Tafel's extrapolation method. In chloride binding capacity, paste specimens were casting using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binders. At 28days, solution mixed with the powder of ground specimens was used to measure binding capacity. All specimens of both experiments were wrapped in polythene film to avoid leaching out of chloride and hydroxyl ions. As a result, the CTL by total chloride content ranged from 0.36-1.44% by weight of binders and the CTL by free chloride content ranged from 0.14-0.96%. Accordingly, the difference was ranging, from 0.22 to 0.48% by weight of binder. The order of difference for binder is OPC > 10% SF > 30% PFA > 60% GGBS.

An Experimental Study on the Freezing-Thawing and Chloride Resistance of Concrete Using High Volumes of GGBS (고로슬래그 미분말을 대량 사용한 콘크리트의 염해 및 동결융해 저항성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;You, Jo-Hyung;Ko, Jeong-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag(GGBS) and alkali activator compressive strength, resistance of chloride attack and freezing-thawing is assessed to develop high volume slag concrete, the replacement rate of GGBS of which is more than 80 percent. result, as the replacement rate of GGBS increases, the compressive strength development properties of concrete in early and long term age decreased and resistance chloride attack and freezing-thawing is increased. The early strength development property, however, is extremely advanced by addition of the alkali activator, which is also found to improve resistance chloride attack and freezing-thawing.

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.