• Title/Summary/Keyword: GFRP composite

Search Result 322, Processing Time 0.03 seconds

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

Experimental Study on Flexural Performance of Composite Slabs Reinforced with GFRP-Deckplate (GFRP-데크플레이트로 보강한 합성 슬래브의 휨성능 평가에 관한 실험적 연구)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.165-170
    • /
    • 2009
  • In this study, the flexural experiment was conducted to propose the one-way composite slab system composed of concrete and GFRP-Deckplate by comparing with the composite deck slab system with bar-mesh As a result of experiment, the specimens of the proposed GFRP-Deck composite slab were better than the specimens for comparison in the flexural performance. It is effective for the building structures exposed to air pollution or salt.

Study of the design and mechanical performance of a GFRP-concrete composite deck

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Liu, Ruyue;Ke, Shoufeng
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.679-688
    • /
    • 2017
  • A GFRP-concrete composite bridge deck is presented in this paper. This composite deck is composed of concrete and a GFRP plate and is connected by GFRP perfobond (PBL) shear connectors with penetrating GFRP rebar. There are many outstanding advantages in mechanical behavior, corrosion resistance and durability of this composite deck over conventional reinforced concrete decks. To analyze the shear and flexural performance of this GFRP-concrete composite deck, a static loading experiment was carried out on seven specimens. The failure modes, strain development and ultimate bearing capacity were thoroughly examined. Based on elastic theory and strain-based theory, calculation methods for shear and flexural capacity were put forward and revised. The comparison of tested and theoretical capacity results showed that the proposed methods could effectively predict both the flexural and shear capacity of this composite deck. The ACI 440 methods were relatively conservative in predicting flexural capacity and excessively conservative in predicting shear capacity of this composite deck. The analysis of mechanical behavior and the design method can be used for the design of this composite deck and provides a significant foundation for further research.

An experimental study on structural behaviour of the MMA double wide flanged GFRP pipe composite structures (II) (MMA 이중 플랜지를 갖는 GFRP 복합관 구조거동에 관한 실험 연구 (II))

  • Ji, Hyo-Seon;Mamdouh, El-Badry
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.50-61
    • /
    • 2015
  • This paper presents on the structural behavior of the the methyl methacrylate monomer (MMA) double wide flanged the glass fiber-reinforced polymer(GFRP) pipe composite structures for the manhole raise. The evaluation of structural performance on this composite structure was conducted by the axial load, fatigue load, and ultimate load test. The assessment indicates that the MMA double wide flanged GFRP pipe composite structures was confirmed safety, durability and reliability in result as expected. It was found that this composite structure was able to short working times to around 30-50% and construction costs to around 10-23% with compare other construction methods. Also, environmental pollution and civil complaints will be prevented because there will be no longer any noises, vibrations, dust, or construction wastes.

Development of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 데크를 이용한 아치가교 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Glass-fiber reinforced polyester (GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood due to light weight and high durability of GFRP composite material. If a temporary arch bridge is built by GFRP composite deck, rapid construction of the bridge and reuse of the GFRP composite deck are possible. In this paper, we develop a type of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several possible types of temporary arch bridges are suggested and verified by finite element analysis.

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

Development of a System of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 아치구조를 이용한 가교 시스템 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.276-281
    • /
    • 2008
  • Glass-fiber reinforced polyester(GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood. One of passible applications of GFRP composite material is to build temporary bridges by assembling GFRP composite decks. In this paper, we develop a system of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several types of temporary arch bridges are suggested and verified by FE analysis.

  • PDF

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp;Gemi, Lokman;Madenci, Emrah;Aksoylu, Ceyhun;Kalkan, İlker
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.193-204
    • /
    • 2022
  • The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

An Experimental Evaluation on Flexural Performance of Light-Weight Void Composite Floor using GFRP (GFRP를 이용한 경량합성바닥의 휨성능에 대한 실험적 평가)

  • Ryu, Jae-Ho;Park, Se-Ho;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.125-135
    • /
    • 2011
  • To obtain a lower story height with a long span and better fire resistance, a new composite floor system using GFRP (glass-fiber-reinforced plastics) was proposed. This floor system consists of asymmetric steel with a web opening, a hollow core ball, concrete, and GFRP. To evaluate the flexural performance of the new composite floor system, an experiment was conducted. The test parameters were the presence of GFRP, the void ratio in relation to the hollow core balls, and the web opening. The test results showed that the resistance and stiffness of the specimen with GFRP were 10% higher than those of the reference specimen, and that fully composite action was accomplished up to the yielding point. After the attainment of the yield strength, the ductility of the specimen was reduced due to the stress concentration around the web openings. The slip between the concrete and steel beam, however, was small. Thus, in the design of the proposed new floor systems, it is desirable that the calculated resistance be reduced by 15%, for safety.