• Title/Summary/Keyword: GFRP bar

Search Result 89, Processing Time 0.024 seconds

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.

Bond Failure Surface of Glass Fiber Reinforced Polymer Bars (GFRP 보강근의 부착파괴면)

  • Lee, Jung-Yoon;Yi, Chong-Ku;Kim, Tae-Young;Park, Ji-Sun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.383-391
    • /
    • 2008
  • The effects of concrete strength on bond-slip behavior and the failure mechanisms of glass fiber reinforced polymer (GFRP) bar embedded in concrete under direct pullout were investigated in this study. Total of twenty seven specimens were prepared by placing two different types of GFRP bars and conventional steel rebar in 25 MPa, 55 MPa, and 75 MPa concrete and tested according to CSA S806-02. The test results showed that the bond strength of the GFRP rebars as well as the steel increased with the concrete strength. However, the increase in the bond strength with respect to the concrete strength was not as significant in the GFRP series as the steel, and it was attributed to the interlaminar failure mechanism observed in the GFRP test specimens.

Behavior of High Strength Concrete Beams with Hybrid Flexural Reinforcements (하이브리드 휨 보강 고강도 콘크리트 보의 성능 평가)

  • Yang, Jun-Mo;Min, Kyung-Hwan;Kim, Young-Woo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.13-16
    • /
    • 2008
  • In a tension-controlled section, all steel tension reinforcement is assumed to yield at ultimate when using the strength design method to calculate the nominal flexural strength of members with steel reinforcement arranged in multiple layers. Therefore, the tension force is assumed to act at the centroid of the reinforcement with a magnitude equal to the area of tension reinforcement times the yield strength of steel. Because FRP materials have no plastic region, the stress in each reinforcement layer will vary depending on its distance from the neutral axis. Similarly, if different types of FRP bars are used to reinforce the same member, the stress level in each bar type will vary, and the member will show different behavior from our expectation. In this study, six high-strength concrete beam specimens reinforced with conventional steels, CFRP bars, and GFRP bars as flexural reinforcements were constructed and tested. The members reinforced with hybrid reinforcements showed higher stiffness, smaller crack width, and better ductility than the members reinforced with single type of FRP bars.

  • PDF

Development Length of GFRP Rebars Based on Pullout Test (인발실험에 의한 GFRP 보강근의 정착길이 제안)

  • Choi, Dong-Uk;Ha, Sang-Su;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.323-331
    • /
    • 2007
  • The development length equations of the GFRP rebars are suggested based on the pullout tests performed in this study. A total of 48 pullout and modified pullout tests were completed. Test variables included embedment length (L=10, 15, 20, and $30d_b$), vertical and horizontal installation of the rebars, height of the rebars (H=100 and 300 mm), and cover thickness $(C=2{\sim}5d_b)$. D13 GFRP rebars domestically developed were used in the experimental program. The average of the bond strength of all vertically installed GFRP rebars was 6.39 MPa with a 5% fractile of 4.63 MPa. A basic development length equation was derived that resulted in an equation equivalent to the one proposed in the ACI 440.1R-03. Careful reevaluation of the bond strength using the modified pullout test indicated that a modification of the design equation was necessary so that the basic development length increases by 11%. The top bar effect of the horizontally installed rebars as well as the effect of the cover thickness were determined and included in the set of suggested equations. Since the current equations were derived from testing rebars embedded in relatively low strength concrete $(f_{ck}=20{\sim}24MPa)$, they result in conservative development lengths when applied to bars embedded in higher strength concretes.

Mechanical Characteristics of Hybrid Fiber Reinforced Composite Rebar (하이브리드 섬유강화 복합재료 리바의 기계적 특성)

  • HAW GIL-YOUNG;AHN DONG-GUE;LEE DONG-GI
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.57-63
    • /
    • 2005
  • The objective of this research is to investigate the mechanical characteristics of the hybrid fiber reinforced composite rebar, which is manufactured from a braidtrusion process. Braidtrusion is a direct composite fabrication technique, utilizing in-line brading and the pultrusion process. hz order to obtain the mechanical behavior of the glass fiber, carbon fiber, and kevlar fiber, the tensile tests are carried out. The results of the fibers are compared with that of steel. Hybrid rebar specimens with various diameters, ranging from model size (3 mm) to full-scale size (9.5 mm), and various cross sections, such as solid and hollow shape, have been manufactured from the braidtrusion process. The tensile and bending tests for the case of the hybrid rebar, the conventional GFRP rebar, and the steel bar have been carried out. The results of the experiments show that the hybrid rebar is superior to the conventional GFRP rebar and the steel bar, from the viewpoint of tensile and bending characteristics.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Analysis for Mechanical Behavior of GFRP Rock Bolt for Permanent Support of Tunnel (영구 터널지보재로서의 활용을 위한 GFRP 록볼트의 역학적 거동 분석)

  • Sim, Jong-Sung;Kang, Tae-Sung;Lee, Yong-Taek;Kim, Hyun-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.124-131
    • /
    • 2010
  • Rock Bolt generally utilizes deformed reinforcing bar welded from structural steel of which strength is higher than required for making advantageous use of the support function of ground. In the condition with highly corrosive underground water, however, problem frequently occurs on tunnel and slope stabilization in terms of repair, rehabilitation and maintenance issues due to the destruction of Rock Bolt by corrosion of steel. A structural performance evaluation for GFRP Rock Bolt was conducted for the purpose of resolving the foregoing problem and at the same time developing a permanently-usable support material. This study intended to evaluate the safety factor of GFRP Rock Bolt by implementing the slope stability interpretation via structural analysis on the basis of its structural characteristics derived from both tensile force function test and shear force function test. It is judged based on the results that GFRP Rock Bolt would secure sufficient ground stability as an alternative material for existing Steel Rock Bolt.

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures (콘크리트 보강용 FRP 리바의 개발 및 내구 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Yoon, Jong-Han;Hwang, Kum-Sik;Cho, Yong-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.