• Title/Summary/Keyword: GFRP Laminates

Search Result 56, Processing Time 0.018 seconds

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

Effect of Bonding Surface Laser Patterns on Interfacial Toughness of GFRP/Al Composite (GFRP/Al 복합재료의 접합부 레이저 패턴이 계면인성에 미치는 영향)

  • Woo Yong Sim;Yu Seong Yun;Oh Heon Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Fiber-metal laminates (FMLs) and polymer matrix composites (PMCs) are formed in various ways. In particular, FMLs in which aluminum is laminated as a reinforced layer are widely used. Also, glass fiber-reinforced plastics (GFRPs) are generally applied as fiber laminates. The bonding interface layer between the aluminum and fiber laminate exhibits low strength when subjected to hot press fabrication in the event of delamination fracture at the interface. This study presents a simple method for strengthening the interface bonding between the aluminum metal and GFRP layer of FML composites. The surfaces of the aluminum interface layer are engraved with three kinds of patterns by using the laser machine before the hot press works. Furthermore, the effect of the laser patterns on the interfacial toughness is investigated. The interfacial toughness was evaluated by the energy release rate (G) using an asymmetric double cantilever bending specimen (ADCB). From the experimental results, it was shown that the strip type pattern (STP) has the most proper pattern shape in GFRP/Al FML composites. Therefore, this will be considered a useful method for the safety assessment of FML composite structures.

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades (풍력 발전 블레이드 복합재 GFRP의 인장 특성의 온도 의존성)

  • Huh, Yong-Hak;Kim, Jong-Il;Kim, Dong-Jin;Lee, Gun-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1053-1057
    • /
    • 2012
  • In this study, the temperature-dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial ($0^{\circ}$) and triaxial ($0/{\pm}45^{\circ}$) laminate composite plates were measured at four different testing temperatures-room temperature, $-30^{\circ}C$, $-50^{\circ}C$, and $60^{\circ}C$. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

Thickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method (SQP법을 사용한 복합재 조류력 발전용 블레이드의 스파 캡에 대한 두께 최적화)

  • Cha, Myung-Chan;Kim, Sang-Woo;Jeong, Min-Soo;Lee, In;Yoo, Seung-Jae;Park, Cheon-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, the thickness optimization for uni-directional (UD) glass fiber reinforced polymer (GFRP) laminates of the spar cap of composite tidal blades was performed under the tip deflection constrains. The spar cap was composed of GFRP composites and carbon fiber reinforced polymer (CFRP) composites. The stress distributions in the blade as well as its material costs for the optimized results were additionally investigated. The optimized thickness was obtained by interacting a sequential quadratic programming (SQP) algorithm and an ABAQUS software to calculate an objective function. It was confirmed that the thickness of UD GFRP increased with a decrease of the restrained tip deflection when a thickness of UD CFRP laminates was constrained to 9 mm. The weight of the optimized spar-cap increased up to 96.2% while the maximum longitudinal tensile stress decreased up to 24.6%. The thickness of UD GFRP laminates increased with a decrease of the thickness of UD CFRP laminates when the tip deflection was constrained to 126.83 mm. The weight increased up to 40.1%, but the material cost decreased up to 16.97%. Finally, the relationships among the weight, internal tensile stress, and material costs were presented based on the optimized thicknesses of the spar cap.

The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials (항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동)

  • Song, Sam-Hong;Kim, Cheol-Woong;Kim, Tae-Soo;Hwang, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

A Study on the Fracture Safety of Glass Fiber Reinforced Plastic Pipes (유리섬유 보강 플라스틱관의 파괴 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety as structural materials of GFRP(Glass Fiber Reinforced Plastics) which we wifely used in the developed countries becauses of their natural of anticorrosion and lightweight etc.. In the fracture test, the mid-span displacement, the strain and the yield load of the GFRP pipes are measured for different number of laminates, and fracture energy is estimated. From this study, it is known that GFRP pipe could be used as structural materials in underground buried pipes if their ductility and strength are increased by controlling number of laminates. Furthermore, because of their merit of lightweight, they can contribute greatly to reduction of construe-tlon cost when they are employed.

  • PDF

Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가)

  • Woo Sung-Choong;Choi Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.

Confinement Effects of Concrete by GFRP Shells (GFRP Laminates에 의한 콘크리트의 구속)

  • 조순호;선성규;정창원;조규성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.937-942
    • /
    • 2003
  • Three series of 36 short circular columns confined by wraps, full shells and partial shells were tested by varying the thickness of GFRP laminates. An assessment of the effectiveness of the existing models on confinement of concrete columns with FRP was made for present tests. Test results indicated significant increases in strength and deformability compared with those in unconfined concrete, particularly warp and full shell confinement. Existing predictive equations for peak strength and strain of confined concrete showed a large scatter and varied considerably, resulting from the realistic fracture strains of FRP nor considered.

  • PDF

Pultruded GFRP box beams: State-of-the-art review on constituents and structural behavior

  • Mozhdeh Dehshirizadeh;Abolfazl Eslami;Mehdi Khodadad Sar-Yazdi;Hamid R. Ronagh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • In recent decades, pultruded glass fiber-reinforced polymer (GFRP) members including those of box sections have attracted the attention of researchers. Nevertheless, the lack of uniform and consistent material properties, simplified design methods, and practical design codes have so far been the main barrier for field applications. Consequently, this paper highlights the existing knowledge concerning the flexural behavior of pultruded GFRP profiles and their failure modes. In particulate, it reviews the most commonly accepted design expressions and code provisions addressing the flange local buckling of pultruded GFRP box beams as the most likely failure mode. In addition, the material characterization of GFRP sections is described in detail along with the standard test methods to quantify the material characterization of GFRP laminates. It is shown that the critical flange local buckling stresses of pultruded GFRP box beams can be predicted with reliable accuracy using the expressions promulgated by ASCE (1984) (in which the flange plates are considered simply-supported at web-flange junction) and EUR 27666. The expressions stipulated in ASCE (2010) highly overestimates the critical flange local buckling stresses of GFRP box beams resulting in unconservative predictions.