DOI QR코드

DOI QR Code

Pultruded GFRP box beams: State-of-the-art review on constituents and structural behavior

  • Received : 2023.04.02
  • Accepted : 2024.04.02
  • Published : 2024.04.25

Abstract

In recent decades, pultruded glass fiber-reinforced polymer (GFRP) members including those of box sections have attracted the attention of researchers. Nevertheless, the lack of uniform and consistent material properties, simplified design methods, and practical design codes have so far been the main barrier for field applications. Consequently, this paper highlights the existing knowledge concerning the flexural behavior of pultruded GFRP profiles and their failure modes. In particulate, it reviews the most commonly accepted design expressions and code provisions addressing the flange local buckling of pultruded GFRP box beams as the most likely failure mode. In addition, the material characterization of GFRP sections is described in detail along with the standard test methods to quantify the material characterization of GFRP laminates. It is shown that the critical flange local buckling stresses of pultruded GFRP box beams can be predicted with reliable accuracy using the expressions promulgated by ASCE (1984) (in which the flange plates are considered simply-supported at web-flange junction) and EUR 27666. The expressions stipulated in ASCE (2010) highly overestimates the critical flange local buckling stresses of GFRP box beams resulting in unconservative predictions.

Keywords

References

  1. Adams, D.F. (2002), Tabbed Versus Untabbed Fiber-Reinforced Composite Compression Specimens.
  2. Alhawamdeh, M., Alajarmeh, O., Aravinthan, T., Shelley, T., Schubel, P., Mohammed, A. and Zeng, X. (2021), "Review on local buckling of hollow box FRP profiles in civil structural applications", Polym., 13(23), 4159. https://doi.org/10.3390/polym13234159.
  3. ASCE (1984), Structural Plastics Design Manual, American Society of Civil Engineers.
  4. ASCE (2010), Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures.
  5. Ascione, F., Feo, L., Lamberti, M. and Penna, R. (2017), "Experimental and numerical evaluation of the axial stiffness of the web-to-flange adhesive connections in composite I-Beams", Compos. Struct., 176, 702-714. https://doi.org/10.1016/j.compstruct.2017.05.071.
  6. Ascione, L., Caron, J.F., Godonou, P., Van Ijselmuijden, K., Knippers, J., Mottram, T., Oppe, M., Gantriis Sorensen, M., Taby, J. and Tromp, L. (2016), Prospect for New Guidance in the Design of FRP, EC Joint Research Centre, Ispra.
  7. ASTM D2344 (2016), Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, West Conshohocken, PA.
  8. ASTM D3039 (2017a), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, West Conshohocken, PA.
  9. ASTM D3410 (2010a), Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, West Conshohocken, PA.
  10. ASTM D3518 (2018), Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a 45° Laminate, West Conshohocken, PA.
  11. ASTM D5379 (2005), Standard Test Method for Shear Properties of Composite Materials by the V-Notched, West Conshohocken, PA.
  12. ASTM D6272 (2010b), Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending, West Conshohocken, PA.
  13. ASTM D638 (2014), Standard Test Method for Tensile Properties of Plastics, West Conshohocken, PA.
  14. ASTM D695 (2015), Standard Test Method for Compressive Properties of Rigid Plastics, West Conshohocken, PA.
  15. ASTM D7246 (2007), Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, West Conshohocken, PA.
  16. ASTM D790 (2017b), Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, West Conshohocken, PA.
  17. Bakis, C.E., Bank, L.C., Brown, V., Cosenza, E., Davalos, J.F., Lesko, J.J., ... & Triantafillou, T.C. (2002), "Fiber-reinforced polymer composites for construction-State-of-the-art review", J. Compos. Constr., 6(2), 73-87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
  18. Bank, L.C. (1987), "Shear coefficients for thin-walled composite beams", Compos. Struct., 8(1), 47-61. https://doi.org/10.1016/0263-8223(87)90015-8.
  19. Bank, L.C. (1989), "Flexural and shear moduli of full-section fiber reinforced plastic (FRP) pultruded beams", J. Test. Eval., 17, 40-45. https://doi.org/10.1520/JTE11531J.
  20. Bank, L.C. (1990), "Shear properties of pultruded glass FRP materials", Mater. Civil Eng., 2(2), 118-122. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:2(118).
  21. Bank, L.C. (2006), Composites for Construction, John Wiley and Sons.
  22. Bank, L.C. and Mosallam, A.S. (1992), "Creep and failure of a full-size fiber-reinforced plastic pultruded frame", Compos. Eng., 2(3), 213-227. https://doi.org/10.1016/0961-9526(92)90005-Q.
  23. Bank, L.C. and Yin, J. (1996), "Buckling of orthotropic plates with free and rotationally restrained unloaded edges", Thin Wall. Struct., 24(1), 83-96. https://doi.org/10.1016/0263-8231(95)00036-4.
  24. Bank, L.C., Gentry, T.R. and Nadipelli, M. (1996), "Local buckling of pultruded FRP beams-analysis and design", J. Reinf. Plast. Compos., 15(3), 283-294. https://doi.org/10.1177/073168449601500304.
  25. Bank, L.C., Nadipelli, M. and Gentry, T.R. (1994), "Local buckling and failure of pultruded fiber-reinforced plastic beams", J. Eng. Mater. Technol., 116(2), 233-237. https://doi.org/10.1115/1.2904278.
  26. Bank, L.C., Yin, J. and Nadipelli, M. (1995), "Local buckling of pultruded beams-nonlinearity, anisotropy and inhomogeneity", Constr. Build. Mater., 9(6), 325-331. https://doi.org/10.1016/0950-0618(95)00051-8.
  27. Baran, I. (2015), Pultrusion: State-of-the-Art Process Models, Smithers Rapra Technology Ltd.
  28. Barbero, E. and Tomblin, J. (1994), "A phenomenological design equation for FRP columns with interaction between local and global buckling", Thin Wall. Struct., 18(2), 117-131. https://doi.org/10.1016/0263-8231(94)90013-2.
  29. Barbero, E.J. (2011), Introduction to Composite Materials Design, 2nd Edition, CRC Press.
  30. Barbero, E.J. and Raftoyiannis, I.G. (1993), "Local buckling of FRP beams and columns", J. Mater. Civil Eng., 5(3), 339-355. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:3(339).
  31. Barbero, E.J., Fu, S.H. and Raftoyiannis, I. (1991), "Ultimate bending strength of composite beams", Mater. Civil Eng., 3(4), 292-306. https://doi.org/10.1061/(ASCE)0899-1561(1991)3:4(292).
  32. Barbero, E.J., Makkapati, S. and Tomblin, J.S. (1999), "Experimental determination of the compressive strength of pultruded structural shapes", Compos. Sci. Technol., 59(13), 2047-2054. https://doi.org/10.1016/S0266-3538(99)00063-9.
  33. Bedford Reinforced Plastics (2022). https://Bedfordreinforced.Com/the-Pultrusion-Process/
  34. Benfratello, S., Fiore, V., Palizzolo, L. and Scalici, T. (2017), "Evaluation of continuous filament mat influence on the bending behaviour of GFRP pultruded material via Electronic Speckle Pattern Interferometry", Arch. Civil Mech. Eng., 17(1), 169-177. https://doi.org/10.1016/j.acme.2016.09.009.
  35. Borowicz, D.T. and Bank, L.C. (2011), "Behavior of pultruded fiber-reinforced polymer beams subjected to concentrated loads in the plane of the web", J. Compos. Constr., 15(2), 229-238. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000082.
  36. Brooks, R.J. and Thrvey, G.J. (1995), "Lateral buckling of pultruded GRP I-section cantilevers", Compos. Struct., 32(1-4), 203-215. https://doi.org/10.1016/0263-8223(95)00018-6.
  37. Cardoso, D.C., Harries, K.A. and Batista, E.D.M. (2014), "Closedform equations for compressive local buckling of pultruded thin-walled sections", Thin Wall. Struct., 79, 16-22. https://doi.org/10.1016/j.tws.2014.01.013.
  38. Cardoso, D.C.T. (2014), "Compressive strength of pultruded glassfiber reinforced polymer (GFRP) Columns", Ph.D. Dissertation, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering.
  39. Carlesson, L.A., Adams, D.F. and Pipes, R.B. (2014), Experimental Characterization of Advanced Composite Materials, 4th Edition, CRC Press.
  40. Castellaro, S. and Russo, S. (2019), "Dynamic characterization of an all-FRP pultruded construction", Compos. Struct., 218, 1-14. https://doi.org/10.1016/j.compstruct.2019.03.032.
  41. Cavaleri, L., Di Paola, M., Ferrotto, M.F., Scalici, T. and Valenza, A. (2019), "Structural performances of pultruded GFRP emergency structures-Part 1: Experimental characterization of materials and substructure", Compos. Struct., 214, 325-334. https://doi.org/10.1016/j.compstruct.2019.02.004.
  42. CEN EN 13706 (2002), Reinforced Plastics Composites: Specifications for Pultruded Profiles, Part 1: Designation; Part 2: Method of Test and General Requirements; Part 3: Specific Requirements, The European Committee for Standardization.
  43. Chamis, C.C. and Sendeckyj, G.P. (1968), "Critique on theories predicting thermoelastic properties of fibrous composites", J. Compos. Mater., 2(3). 332-358. https://doi.org/10.1177/002199836800200305.
  44. Choi, Y. and Yuan, R.L. (2003), "Time-dependent deformation of pultruded fiber reinforced polymer composite columns", J. Compos. Constr., 7(4), 356-362. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(356).
  45. Clarke, J.L. (1996), Structural Design of Polymer CompositesEUROCOMP Design Code and Handbook, E & FN Spon.
  46. CNR-DT 205/2007 (2007), Guide for the Design and Construction of Structures Made of FRP Pultruded Elements, Italian National Research Council.
  47. Coguill, R.J. and Adams, D.F. (1999), "Selection of the proper wedge grip surface for tensile testing composite materials", Evolving and Revolutionary Technologies for the New Millennium, 2332-2345.
  48. Correia, J.R., Branco, F., Gonilha, J., Silva, N. and Camotim, D. (2010), "Glass fibre reinforced polymer pultruded flexural members: Assessment of existing design methods", Struct. Eng. Int., 20(4), 362-369. https://doi.org/10.2749/101686610793557771.
  49. Correia, J.R., Branco, F.A., Silva, N.M.F., Camotim, D. and Silvestre, N. (2011), "First-order, buckling and post-buckling behaviour of GFRP pultruded beams. Part 1: Experimental study", Comput. Struct., 89(21), 2052-2064. https://doi.org/10.1016/j.compstruc.2011.07.005.
  50. Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. https://doi.org/10.1115/1.3625046.
  51. Davalos, J.F. and Qiao, P. (1997), "Analytical and experimental study of lateral and distortional buckling of FRP wide-flange beams", J. Compos. Constr., 1(4), 150-159. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:4(150).
  52. Davalos, J.F., Salim, H.A., Qiao, P., Lopez-Anido, R. and Barbero, E.J. (1996), "Analysis and design of pultruded FRP shapes under bending", Compos. Part B: Eng., 27(3), 295-305. https://doi.org/10.1016/1359-8368(95)00015-1.
  53. Du, A., Liu, Y., Xin, H. and Zuo, Y. (2016), "Progressive damage analysis of PFRP double-lap bolted joints using explicit finite element method", Compos. Struct., 152, 860-869. https://doi.org/10.1016/j.compstruct.2016.06.028.
  54. Edwards, K.L. (1998), "An overview of the technology of fibrereinforced plastics for design purposes", Mater. Des., 19, 1-10. https://doi.org/10.1016/S0261-3069(98)00007-7.
  55. Estep, D.D. (2014), "Bending and shear behavior of pultruded glass fiber reinforced polymer composite beams with closed and open sections", Master Thesis, West Virgibia University, USA.
  56. Feng, P., Wu, Y. and Liu, T. (2022), "Non-uniform fiber-resin distributions of pultruded GFRP profiles", Compos. Part B: Eng., 231, 109543. https://doi.org/10.1016/j.compositesb.2021.109543.
  57. Geschwindner, L.F. (2011), Unified Design of Steel Structures, John Wiley & Sons.
  58. Ghasemnejad, H., Blackman, B.R.K., Hadavinia, H. and Sudall, B. (2009), "Experimental studies on fracture characterisation and energy absorption of GFRP composite box structures", Compos. Struct., 88(2), 253-261. https://doi.org/10.1016/j.compstruct.2008.04.006.
  59. Godat, A., Legeron, F., Gagne, V. and Marmion, B. (2013), "Use of FRP pultruded members for electricity transmission towers", Compos. Struct., 105, 408-421. https://doi.org/10.1016/j.compstruct.2013.05.025.
  60. Godoy, L.A., Barbero, E.J. and Raftoyiannis, I. (1995), "Interactive buckling analysis of fiber-reinforced thin-walled columns", J. Compos. Mater., 29(5), 591-613. https://doi.org/10.1177/002199839502900503.
  61. Gonilha, J.A., Correia, J.R. and Branco, F.A. (2013), "Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype", Compos. Part B: Eng., 53, 193-206. https://doi.org/10.1016/j.compositesb.2013.04.054.
  62. Gonilha, J.A., Correia, J.R. and Branco, F.A. (2014), "Structural behaviour of a GFRP-concrete hybrid footbridge prototype: Experimental tests and numerical and analytical simulations", Eng. Struct., 60, 11-22. https://doi.org/10.1016/j.engstruct.2013.12.018.
  63. Grammatikos, S.A., Evernden, M., Mitchels, J., Zafari, B., Mottram, J.T. and Papanicolaou, G.C. (2016), "On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector", Mater. Des., 96, 283-295. https://doi.org/10.1016/j.matdes.2016.02.026.
  64. Guades, E., Aravinthan, T. and Islam, M.M. (2014), "Characterisation of the mechanical properties of pultruded fibre-reinforced polymer tube", Mater. Des., 63, 305-315. https://doi.org/10.1016/j.matdes.2014.06.018.
  65. Haj-Ali, R., Kilic, H. and Zureick, A.H. (2001), "Threedimensional micromechanics-based constitutive framework for analysis pultruded composite structures", Eng. Mech., 127(7), 653-660. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(653).
  66. Halpin, J.C. and Tsai, S.W. (1969), Effects of Environmental Factors on Composite Materials, Citeseer.
  67. Hodgkinson, J.M. (2000), Mechanical Testing of Advanced Fibre Composites, Elsevier.
  68. Hollaway, L.C. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24(16), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062.
  69. Jiang, X., Kolstein, H. and Bijlaard, F.S.K. (2012), "Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks", Mater. Des., 37, 304-312. https://doi.org/10.1016/j.matdes.2012.01.017.
  70. Johnson, E.T. and Shield, C.K. (1998), "Lateral-torsional buckling of composite beams", Second International Conference on Composites in Infrastructure National Science Foundation, January.
  71. Jones, R.M. (1999), Mechanics of Composite Materials, Taylor Francis.
  72. Kang, J.O. (2002), "Fiber-reinforced polymeric pultruded members subjected to sustained loads", Ph.D Dissertation, Georgia Institute of Technology.
  73. Kaw, A.K. (2005), Mechanics of Composite Materials, CRC press.
  74. Kim, H.Y. and Lee, S.Y. (2019), "Static and fatigue load performance of a pultruded GFRP deck panel reinforced with steel wires", Compos. Struct., 207, 166-175. https://doi.org/10.1016/j.compstruct.2018.09.022
  75. Kollar, L.P. (2003), "Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections", J. Struct. Eng., 129(11), 1503-1513. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1503).
  76. Kumar, P., Chandrashekhara, K. and Nanni, A. (2003), "Testing and evaluation of components for a composite bridge deck", J. Reinf. Plast. Compos., 22(5), 441-461. https://doi.org/10.1177/0731684403022005273.
  77. Kumar, P., Chandrashekhara, K. and Nanni, A. (2004), "Structural performance of a FRP bridge deck", Constr. Build. Mater., 18(1), 35-47. https://doi.org/10.1016/S0950-0618(03)00036-9.
  78. Lee, S. (1989), Reference Book for Composites Technology, CRC Press.
  79. Lee, S. and Munro, M. (1986), "Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique", Compos., 17(1), 13-22. https://doi.org/10.1016/0010-4361(86)90729-9.
  80. Liu, T. (2017), "Stability behavior of pultruded GFRP I-sections subjected to flexure", Ph.D. Dissertation, University of Pittsburgh.
  81. Liu, T. and Harries, K.A. (2018), "Flange local buckling of pultruded GFRP box beams", Compos. Struct., 189, 463-472. https://doi.org/10.1016/j.compstruct.2018.01.101.
  82. Liu, T., Feng, P., Tang, J. and Liu, X. (2023), "Pullwinding technique for realizing hybrid roving architecture in pultruded GFRP composites", Compos. Struct., 305, 116483. https://doi.org/10.1016/j.compstruct.2022.116483.
  83. Liu, T., Feng, P., Wu, Y., Liao, S. and Meng, X. (2021), "Developing an innovative curved-pultruded large-scale GFRP arch beam", Compos. Struct., 256, 113111. https://doi.org/10.1016/j.compstruct.2020.113111.
  84. Liu, T., Vieira, J.D. and Harries, K.A. (2020), "Predicting flange local buckling capacity of pultruded GFRP I-sections subject to flexure", J. Compos. Constr., 24(4), 4020025. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001032.
  85. Liu, T., Yang, J.Q., Feng, P. and Harries, K.A. (2020), "Determining rotational stiffness of flange-web junction of pultruded GFRP I-sections", Compos. Struct., 236, 111843. https://doi.org/10.1016/j.compstruct.2019.111843.
  86. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  87. Mallick, P.K. (2007), Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd Edition, CRC Press.
  88. Minghini, F., Tullini, N. and Laudiero, F. (2014), "Identification of the short-term full-section moduli of pultruded FRP profiles using bending tests", J. Compos. Constr., 18(1), 04013030. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000391.
  89. Mottram, J.T. (1991), "Evaluation of design analysis for pultruded fibre-reinforced polymeric box beams", Struct. Eng., 69, 211-220.
  90. Mottram, J.T. (1992), "Lateral-torsional buckling of a pultruded Ibeam", Compos., 23(2), 81-92. https://doi.org/10.1016/0010- 4361(92)90108-7.
  91. Mottram, J.T. (2004), "Shear modulus of standard pultruded fiber reinforced plastic material", J. Compos. Constr., 8(2), 141-147. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(141).
  92. Muttashar, M., Karunasena, W., Manalo, A. and Lokuge, W. (2016), "Behaviour of hollow pultruded GFRP square beams with different shear span-to-depth ratios", J. Compos. Mater., 50(21), 2925-2940. https://doi.org/10.1177/0021998315614993.
  93. Neto, A.B.D.S.S. and La Rovere, H.L. (2007), "Flexural stiffness characterization of fiber reinforced plastic (FRP) pultruded beams", Compos. Struct.,. 81(2), 274-282. https://doi.org/10.1016/j.compstruct.2006.08.016.
  94. Nguyen, T. (2014), "Lateral-torsional buckling resistance of pultruded fiber reinforced polymer shapes", Ph.D Dissertation, University of Warwick, UK.
  95. Omidvar, B. (1998), "Shear coefficient in orthotropic thin-walled composite beams", J. Compos. Constr., 2(1), 46-56. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(46).
  96. Pecce, M. and Cosenza, E. (2000), "Local buckling curves for the design of FRP profiles", Thin Wall. Struct., 37(3), 207-222. https://doi.org/10.1016/S0263-8231(00)00023-9.
  97. Pendhari, S., Kant, T. and Desai, Y. (2008), "Application of polymer composites in civil construction: A general review", Compos. Struct., 84(2), 114-124. https://doi.org/10.1016/j.compstruct.2007.06.007.
  98. Qiao, P., Davalos, J.F. and Wang, J. (2001), "Local buckling of composite FRP shapes by discrete plate analysis", J. Struct. Eng., 127(3), 245-255. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(245).
  99. Roberts, T.M. (2002), "Influence of shear deformation on buckling of pultruded fiber reinforced plastic profiles", J. Compos. Constr., 6(4), 241-248. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(241).
  100. Roberts, T.M. and Al-Ubaidi, H. (2002), "Flexural and torsional properties of pultruded fiber reinforced plastic I-Profiles", J. Compos. Constr., 6(1), 28-34. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(28).
  101. Roberts, T.M. and Masri, H.M.K.J.A.H. (2003), "Section properties and buckling behavior of pultruded FRP profiles", J. Reinf. Plast. Compos., 22(14), 1305-1317. https://doi.org/10.1177/0731684403035584.
  102. Satasivam, S., Bai, Y., Yang, Y., Zhu, L. and Zhao, X.L. (2018), "Mechanical performance of two-way modular FRP sandwich slabs", Compos. Struct., 184, 904-916. https://doi.org/10.1016/j.compstruct.2017.10.026.
  103. Silva, T., Correia, L., Dehshirizadeh, M. and Sena-Cruz, J. (2022), "Flexural creep response of hybrid GFRP-FRC sandwich panels", Mater., 15(7), 2536. https://doi.org/10.3390/ma15072536.
  104. Sims, G.D., Johnson, A.F. and Hill, R.D. (1987), "Mechanical and structural properties of a GRP pultruded section", Compos. Struct., 8(3), 173-187. https://doi.org/10.1016/0263-8223(87)90068-7.
  105. Sonti, S.S. and Barbero, E.J. (1996), "Material characterizatiof pultruded laminates and shapes", J. Reinf. Plast. Compos., 15, 701-717. https://doi.org/10.1177/073168449601500705.
  106. Swanson, S.R. (1997), Introduction to Design and Analysis with Advanced Composite Materials.
  107. Timoshenko, S.P. and Gere, J.M. (2009), Theory of Elastic Stability, Dover Publications.
  108. Turvey, G.J. (1996), "Effects of load position on the lateral buckling response of pultruded GRP cantilevers-comparisons between theory and experiment", Compos. Struct., 35(1), 33-47. https://doi.org/10.1016/0263-8223(96)00022-0.
  109. Turvey, G.J. (1998), "Torsion tests on pultruded GRP sheet", Compos. Sci. Technol., 58(8), 1343-1351. https://doi.org/10.1016/S0266-3538(98)00003-7.
  110. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2020), "Pultruded materials and structures: A review", J. Compos. Mater., 54(26), 4081-4117. https://doi.org/10.1177/0021998320922894.
  111. Vieira, J.D., Liu, T. and Harries, K.A. (2018), "Flexural stability of pultruded glass fibre-reinforced polymer I-sections", Proc. Inst. Civil Eng.-Struct. Build., 171(11), 855-866. https://doi.org/10.1680/jstbu.16.00238.
  112. Wu, C. and Bai, Y. (2014), "Web crippling behaviour of pultruded glass fibre reinforced polymer sections", Compos. Struct., 108, 789-800. https://doi.org/10.1016/j.compstruct.2013.10.020.
  113. Xin, H., Mosallam, A., Liu, Y., Wang, C. and Zhang, Y. (2017), "Analytical and experimental evaluation of flexural behavior of FRP pultruded composite profiles for bridge deck structural design", Constr. Build. Mater., 150, 123-149. https://doi.org/10.1016/j.conbuildmat.2017.05.212.
  114. Zhang, S.Y., Soden, P.D. and Soden, P.M. (1986), "Interlaminar shear fracture of chopped strand mat glass fibre-reinforced polyester laminates", Compos., 17(2), 100-110. https://doi.org/10.1016/0010-4361(86)90247-8.
  115. Zureick, A. and Scott, D. (1997), "Short-term behavior and design of fiber-reinforced polymeric slender members under axial compression", J. Compos. Constr., 1(4), 140-149. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:4(140)
  116. Zureick, A.H. and Steffen, R. (2000), "Behavior and design of concentrically loaded pultruded angle struts", Struct. Eng., 126(3), 406-416. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(406).