• 제목/요약/키워드: GF(Glass Fiber)

검색결과 74건 처리시간 0.029초

유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과 (Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites)

  • 고성위;엄윤성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • 제5권2호
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

GF/PP 복합재료의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Glass Fiber Polypropylene Composites)

  • 엄윤성
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.421-427
    • /
    • 1999
  • The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperatures range of the ambient temperature to $-50^{\circ}C$ The critical fracture energy increase as fiber volume fraction ratio increased The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up. Major failure mechanisms can be classfied such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구 (A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites)

  • 김규형;조동혁;이주원;김상덕;신철민;윤정환
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.

사출 성형공정 압력에 따른 PA6/GF 복합재료의 물리적 특성 및 성능 예측 시뮬레이션에 관한 연구 (A Study on the Mechanical Properties and Performance Prediction Simulation of PA6/GF Composite Materials with Injection Molding Pressure)

  • 유성훈;김민성;윤현성;박종수;전성민;심지현
    • 한국염색가공학회지
    • /
    • 제34권1호
    • /
    • pp.46-57
    • /
    • 2022
  • In this study, the relationship between fiber orientation and mechanical properties with the injection pressure of polyamide-6/glass fiber composite materials manufactured by the injection molding process was investigated. Also, an actual experimental data and finite element model-based simulation data were analyzed. Specimens were manufactured through the injection molding process setting the injection pressure differently to 700, 800, 900, and 1000 bar, respectively. A morphological analysis and orientation of the PA6/GF composite material were observed using Optical microscope. Through tensile and flexural strength tests, the mechanical properties of the PA6/GF composite materials with the injection pressure were studied. As a result, it was confirmed that the mechanical properties were the superior under the injection pressure of 900 bar molding conditions. In addition, the mechanical properties of the actually manufactured specimen (PA6/GF) and virtual engineering S/W((Digimat, Abaqus) were used to compare and analyze the analysis results for the mechanical properties, and based on the reliable DB, the physical properties of the PA6/GF composite characteristics were studied.

유리섬유강화 복합재료의 미끄럼 속도변화에 따른 마모 특성 (Characteristics of Wear on Sliding Speed of Glass Fiber Reinforcement Composites)

  • 김형진;고성위
    • 수산해양기술연구
    • /
    • 제48권3호
    • /
    • pp.277-283
    • /
    • 2012
  • The characteristics of abrasive wear on sliding speed of glass fiber reinforcement (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and surface roughness of these materials on sliding speed were determined experimentally. The major failure mechanisms were lapping layers, deformation of resin, ploughing, delamination, and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the sliding speed the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding speed was higher in wear test.

하중변화에 따른 GF/PUR 복합재료의 연삭마모특성 (Effect of load upon the abrasive wear characteristics of glass fiber reinforced polyurethane composites)

  • 고성위
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.495-502
    • /
    • 2010
  • The effect of load and sliding speed on abrasive wear characteristics of glass fiber/polyurethane (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. Experimental results showed that the surface roughness of the GF/PUR composites was increased as applied load was higher in wear test. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on applied load and sliding speed for these composites. It could be verified by scanning electric microscopy (SEM) photograph of surface tested that major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking.

섬유강화복합재의 Tribological 특성에 관한 연구 (Tribological Characteristics of Fiber-Reinforced Plastics(FRP))

  • 성인하;여인완;김대은
    • Tribology and Lubricants
    • /
    • 제12권1호
    • /
    • pp.6-14
    • /
    • 1996
  • Experimental investigation on the tribological behavior of fiber-reinforced plastics(FRP) has been studied. It is shown that the frictional behavior of carbon FRP depends on the fiber-orientation while glass FRP does not. The friction coefficient values for carbon FRP were about 0.8, 0.3, and 0.2 for normal, 45$^{\circ}$ and 0$^{\circ}$ sliding directions respectively. Also, the applied load was found to affect the friction coefficient. In the case of this work, 50 gf resulted in the highest value while 200 gf resulted in the lowest value. The friction coefficients for higher loads fell in between the two extreme values.

Magnetic Contactor Upper Frame 사출성형시 유리섬유 배향에 따른 뒤틀림 변형에 관한 연구 (A study of warpage caused by glass fiber orientation in Injection Molding to Upper Frame of Magnetic Contactor in 85 AF)

  • 박진영;조해용;김길수;황한성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.766-771
    • /
    • 2000
  • As using of insulating material of plastic to industrial electric field, thermoset has been gradually substituted for thermoplastic. But changing the material with crystalline has some problem, which is strength or warpage, Especially getting a strength to endure inner pressure is necessary when arc is occurred. So we use the material that is composed of glass fiber to compensate strength. By the way as the reinforced glass-fiber material is used in injection molding, unstableness of dimension is appeared frequently and it is difficult to know warpage pattern. So this paper will be contributed to know warpage pattern of mold product that is upper frame of magnetic contactor caused by glass-fiber orientation with fixed gate-system, when glass-fiber reinforced material with classification of poly-amide is used in injection molding.

  • PDF

CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 기계적 물성 향상에 관한 연구 (Enhancing the Mechanical Properties of Z-Spring by Implementing CF&GF Hybrid Prepreg Lamination Patterns)

  • 김정근;최선호;김영근;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.53-59
    • /
    • 2021
  • In vibration-free vehicles such as limousine buses, the vibration is minimized by installing an air spring instead of the leaf spring used in the existing freight cars to prevent the damage to the loaded cargo from shocks generated during movement. In the existing vehicles, steel structures support the air spring system. This study was aimed at replacing the steel structures used in the Z-spring by carbon fiber and glass fiber reinforced plastics. In addition, the mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber and glass fiber prepreg were derived using specimens molded with the corresponding prepreg. The final goal was to develop a material lighter than the conventional steel material but with enhanced mechanical properties. Although the CF prepreg exhibited excellent mechanical properties, the production cost was extremely high. To overcome this limitation, hybrid composites with GF prepreg were examined, which are expected to be promising future materials.