• 제목/요약/키워드: GF(2$^n$)

검색결과 146건 처리시간 0.021초

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

제약적인 환경에 적합한 유한체 연산기 구조 설계 (Design of an Operator Architecture for Finite Fields in Constrained Environments)

  • 정석원
    • 정보보호학회논문지
    • /
    • 제18권3호
    • /
    • pp.45-50
    • /
    • 2008
  • 유한체 연산기는 생성 기약다항식과 원소의 표현 방법에 따라 효율성에 많은 영향을 받는다. 본 논문에서는 홀수 소수 p에 대한 확장체 GF$(p^n)$ 위의 곱셈에 대한 두 가지 직렬곱셈기를 제안한다. 기약 이항 다항식을 이용한 직렬 곱셈기는 (2n+5)개의 레지스터, 2개의 MUX, 2개의 GF(p)곱셈기, 1개의 GF(p) 덧셈기를 사용하여 $n^2+n$ 클럭 싸이클 이후에 곱셈 결과를 얻는 구조이다. 기약 AOP를 이용한 직렬 곱셈기는 (2n+5)개의 레지스터, 1개의 MUX, 1개의 GF(p)곱셈기, 1개의 GF(p) 덧셈기를 사용하여 $n^2$+3n+2 클럭 싸이클 이후에 곱셈결과를 얻는다.

FAST OPERATION METHOD IN GF$(2^n)$

  • Park, Il-Whan;Jung, Seok-Won;Kim, Hee-Jean;Lim, Jong-In
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.531-538
    • /
    • 1997
  • In this paper, we show how to construct an optimal normal basis over finite field of high degree and compare two methods for fast operations in some finite field $GF(2^n)$. The first method is to use an optimal normal basis of $GF(2^n)$ over $GF(2)$. In case of n = st where s and t are relatively primes, the second method which regards the finite field $GF(2^n)$ as an extension field of $GF(2^s)$ and $GF(2^t)$ is to use an optimal normal basis of $GF(2^t)$ over $GF(2)$. In section 4, we tabulate implementation result of two methods.

  • PDF

유한체 상의 지수 함수의 분류와 암호학에의 응용 (Classification of Exponent Permutations over finite fields GF($2^n$) and its applications)

  • 박상우;김광조
    • 정보보호학회논문지
    • /
    • 제6권4호
    • /
    • pp.97-106
    • /
    • 1996
  • 유한체 GF($2^n$)상의 모든 지수 함수들의 군에 동치 관계를 정의하고, 이들 동치 관계에 의해 분류된 각 동치류에 속하는 지수 함수들은 동일한 암호학적 성질을 가짐을 보인다. 그리고, GF($2^7$)과 GF($2^8$)상의 모든 지수 함수들을 분류한다. 다음으로 지수 함수 분류의 3가지 응용을 제시한다. 우선 GF($2^n$)상의 2개의 지수 함수의 연접에 의한 $n\;{\times}\;2n$ S(ubstitution)-box의 설계 방법을 제안하고, 그들의 입.출력 변화 내성과 선형 내성을 분석한다. 그리고, Eurocrypt '93에서 Beth가 세운 가설이 그릇된 것임을 지적하고, LOKI 블록 알고리즘에 사용된 S-box의 안전성에 대하여 논한다.

Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture

  • Pizzolatti, Andre Luiz A.;Gaudig, Florian;Seitz, Daniel;Roesler, Carlos R.M.;Salmoria, Gean Vitor
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.781-791
    • /
    • 2018
  • BACKGROUND: Glucosamine hydrochloride (GlcN HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. METHOD: Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) $TGF-{\beta}$ ($5ng\;mL^{-1}$) and IGF-I ($10ng\;mL^{-1}$), GlcN HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. RESULTS: The two glucosamines showed opposite effects in monolayer culture: GlcN HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. CONCLUSION: GlcN HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.

GF(2^n)상에서 병렬 멱승 연산의 프로세서 바운드 향상 기법 (The Improved Processer Bound for Parallel Exponentiation in GF(2^n))

  • 김윤정;박근수;조유근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (A)
    • /
    • pp.701-703
    • /
    • 2000
  • 본 논문에서는 정규 기저 표현(normal bases repersentation)을 갖는 GF(2n)상에서의 병렬 멱승 연산에 있어서 2 가지의 개선 사항을 기술한다. 첫째는,k를 윈도우 길이로 할 때 라운드가 [log k]+[log[n/k]]로 고정된 경우에 현재까지 알려진 방법보다 더 작은 수의 프로세서를 갖는 방안이다. 둘째는 점근적인(asymptotic)분석을 통하여 GF(2n)상에서의 병렬 멱승 연산이 O(n/log2n)개의 프로세서로 O(logn)라운드에 수행될 수 있음을 보인다. 이것은 m로세서 $\times$라운드의 바운드를 O(n/logn)으로 하는 것으로 이전까지 알려졌던 O(n)을 개선한 것이다.

  • PDF

타입 II 최적 정규기저를 갖는 GF(2n)의 곱셈기 (Type II Optimal Normal Basis Multipliers in GF(2n))

  • 김창한;장남수
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.979-984
    • /
    • 2015
  • 본 논문에서는 타입 II 최적 정규기저를 갖는 유한체 $GF(2^n)$의 Semi-Systolic 곱셈기를 제안한다. 본 곱셈기는 기존의 2012년에 발표된 Chiou 등의 곱셈기에 비해 공간복잡도 면 에서는 전체 트랜지스터가 $2n^2+44n+26$개 줄고 시간복잡도는 4 클럭 감소한다. 즉, NIST의 ECDSA를 위한 권장 유한체 $GF(2^{333})$인 경우 공간복잡도는 6.4% 줄고 시간복잡도는 2% 정도 줄어든다. 또한 이 구조는 2009년에 Chiou 등이 제안한 동시오류탐지 및 정정방법을 그대로 적용할 수 있는 장점도 있다.

GF($q^n$)상의 병렬 승산기 설계를 위한 기약다항식에 관한 연구 (A Study on Irreducible Polynomial for Construction of Parallel Multiplier Over GF(q$^{n}$ ))

  • 오진영;김상완;황종학;박승용;김홍수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.741-744
    • /
    • 1999
  • In this paper, We represent a low complexity of parallel canonical basis multiplier for GF( q$^{n}$ ), ( q> 2). The Mastrovito multiplier is investigated and applied to multiplication in GF(q$^{n}$ ), GF(q$^{n}$ ) is different with GF(2$^{n}$ ), when MVL is applied to finite field. If q is larger than 2, inverse should be considered. Optimized irreducible polynomial can reduce number of operation. In this paper we describe a method for choosing optimized irreducible polynomial and modularizing recursive polynomial operation. A optimized irreducible polynomial is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(q$^{n}$ ) with low gate counts. and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF

정규 기저를 이용한 $GF((2^n)^m)$에서의 효율적인 역원 알고리즘 (A fast inversion algorithm in $GF((2^n)^m)$ using normal basis)

  • 장구영;김호원;강주성
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2003년도 동계학술대회
    • /
    • pp.174-178
    • /
    • 2003
  • 본 논문은 기존의 정규 기저를 이용한 역원 알고리즘인 IT 알고리즘과 TYT 알고리즘을 개선한 GF(q$^{m}$ )*(q = 2$^n$)에서의 효율적인 역원 알고리즘을 제안한다. 제안된 알고리즘은 작은 n에 대해 GF(q)*의 원소에 대한 역원을 선행 계산으로 저장하고, m-1을 몇 개의 인수와 나머지로 분해함으로써 역원 알고리즘에 필요한 곱셈의 수를 줄일 수 있는 방법이다. 즉, 작은 양의 데이터에 대한 메모리 저장 공간을 이용하여, GF(q$^{m}$ )*에서의 역원을 계산하는 데 필요한 곱셈의 수를 줄일 수 있음을 보여준다.

  • PDF

GF($2^n$) 위에서의 다항식 일수분해 (The polynomial factorization over GF($2^n$))

  • 김창한
    • 정보보호학회논문지
    • /
    • 제9권3호
    • /
    • pp.3-12
    • /
    • 1999
  • 공개키 암호법은 정수 인수분해의 어려움에 바탕을 둔 RSA와 이산대수문제의 어려움에 근거한 EIGamal 암호법을 대표된다. GF(qn)*에서 index-calculus 이산대수 알고리즘을 다항식 인수분해를 필요로 한다. 최근에 Niederreiter에 의하여 유한체위에서의 다항식 인수분해 알고리즘이 제안되었다. 이 논문에서는 정규기저(normal basis)를 이용한 유한체의 연산을 c-언어로 구현하고, 이것을 이용한 Niederreiter의 알고리즘을 기반으로 유한체위에서의 다항식 인수분해 알고리즘과 구현한 결과를 제시한다. The public key crytptosystem is represented by RSA based on the difficulty of integer factorization and ElGamal cryptosystem based on the intractability of the discrete logarithm problem in a cyclic group G. The index-calculus algorithm for discrete logarithms in GF(qn)* requires an polynomial factorization. The Niederreiter recently developed deterministic facorization algorithm for polynomial over GF(qn) In this paper we implemented the arithmetic of finite field with c-language and gibe an implementation of the Niederreiter's algorithm over GF(2n) using normal bases.