• Title/Summary/Keyword: GEV function

Search Result 22, Processing Time 0.027 seconds

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

Derivation of Relationship between Cross-site Correlation among data and among Estimators of L-moments for Generalize Extreme value distribution (Generalized Extreme Value 분포 자료의 교차상관과 L-모멘트 추정값의 교차상관의 관계 유도)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.259-267
    • /
    • 2009
  • Generalized Extreme Value (GEV) distribution is recommended for flood frequency and extreme rainfall distribution in many country. L-moment method is the most common estimation procedure for the GEV distribution. In this study, the relationships between the cross-site correlations between extreme events and the cross-correlation of estimators of L-moment ratios (L-moment Coefficient of Variation (L-CV) and L-moment Coefficient of Skewness (L-CS)) for data generated from GEV distribution were derived by Monte Carlo simulation. Those relationships were fit to the simple power function. In this Monte Carlo simulation, GEV+ distribution were employed wherein unrealistic negative values were excluded. The simple power models provide accurate description of the relationships between cross-correlation of data and cross-correlation of L-moment ratios. Estimated parameters and accuracies of the power functions were reported for different GEV distribution parameters combinations. Moreover, this study provided a description about regional regression approach using Generalized Least Square (GLS) regression method which require the cross-site correlation among L-moment estimators. The relationships derived in this study allow regional GLS regression analyses of both L-CV and L-CS estimators that correctly incorporate the cross-correlation among GEV L-moment estimators.

A study on the optimal equation of the continuous wave spectrum

  • Cho, Hong-Yeon;Kweon, Hyuck-Min;Jeong, Weon-Mu;Kim, Sang-Ik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2015
  • Waves can be expressed in terms of a spectrum; that is, the energy density distribution of a representative wave can be determined using statistical analysis. The JONSWAP, PM and BM spectra have been widely used for the specific target wave data set during storms. In this case, the extracted wave data are usually discontinuous and independent and cover a very short period of the total data-recording period. Previous studies on the continuous wave spectrum have focused on wave deformation in shallow water conditions and cannot be generalized for deep water conditions. In this study, the Generalized Extreme Value (GEV) function is proposed as a more-optimal function for the fitting of the continuous wave spectral shape based on long-term monitored point wave data in deep waters. The GEV function was found to be able to accurately reproduce the wave spectral shape, except for discontinuous waves of greater than 4 m in height.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

The transmuted GEV distribution: properties and application

  • Otiniano, Cira E.G.;de Paiva, Bianca S.;Neto, Daniele S.B. Martins
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.239-259
    • /
    • 2019
  • The transmuted generalized extreme value (TGEV) distribution was first introduced by Aryal and Tsokos (Nonlinear Analysis: Theory, Methods & Applications, 71, 401-407, 2009) and applied by Nascimento et al. (Hacettepe Journal of Mathematics and Statistics, 45, 1847-1864, 2016). However, they did not give explicit expressions for all the moments, tail behaviour, quantiles, survival and risk functions and order statistics. The TGEV distribution is a more flexible model than the simple GEV distribution to model extreme or rare events because the right tail of the TGEV is heavier than the GEV. In addition the TGEV distribution can adjusted various forms of asymmetry. In this article, explicit expressions for these measures of the TGEV are obtained. The tail behavior and the survival and risk functions were determined for positive gamma, the moments for nonzero gamma and the moment generating function for zero gamma. The performance of the maximum likelihood estimators (MLEs) of the TGEV parameters were tested through a series of Monte Carlo simulation experiments. In addition, the model was used to fit three real data sets related to financial returns.

Construction of Bivariate Probability Distribution with Nonstationary GEV/Gumbel Marginal Distributions for Rainfall Data (비정상성 GEV/Gumbel 주변분포를 이용한 강우자료 이변량 확률분포형 구축)

  • Joo, Kyungwon;Choi, Soyung;Kim, Hanbeen;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.41-41
    • /
    • 2016
  • 최근 다변량 확률모형을 이용한 빈도해석이 수문자료 등에 적용되면서 다양하게 연구되고 있으며 다변량 확률모형 중 copula 모형은 주변분포형에 대한 제약이 없어 여러 분야에 걸쳐 활발히 연구되고 있다. 강우자료는 기존 일변량 빈도해석을 수행하기 위하여 사용하던 block maxima 방법 대신 최소무강우시간(inter event time)을 통하여 강우사상을 추출하여 표본으로 사용한다. 또한 기후변화로 인한 강우량의 변화등에 대응하기 위하여 비정상성 Generalized Extreme Value(GEV)와 Gumbel 등의 확률분포형에 대한 연구도 많은 부분 이루어져 있다. 본 연구에서는, Archimedean copula 모형을 이용하여 이변량 확률모형을 구축하면서 여기에 사용되는 주변분포형에 정상성/비정상성 분포형을 적용하였다. 모형의 매개변수는 inference function for margin 방법을 이용하였으며 주변분포형으로는 정상성/비정상성 GEV, Gumbel 모형을 적용하였다. 결과로 정상성/비정상성 경향을 나타내는 지점을 구분하고 각 지점에 대한 정상성/비정상성 주변분포형을 적용한 이변량 확률분포형을 구하였다.

  • PDF

Fragility Assessment of Agricultural Facilities Subjected to Volcanic Ash Fall Hazards (농업시설물에 대한 화산재 취약도 평가)

  • Ham, Hee Jung;Choi, Seung Hun;Lee, Sungsu;Kim, Ho-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • This paper presents findings from the assessment of the volcanic ash fragility for multi-hazard resisting vinyl greenhouse and livestock shed among the agricultural facilities. The volcanic ash fragility was evaluated by using a combination of the FOSM (first-order second-moment) method, available statistics of volcanic load, facility specifications, and building code. In this study, the evaluated volcanic ash fragilities represent the conditional probability of failure of the agricultural facilities over the full range of volcanic ash loads. For the evaluation, 6 types(ie., 2 single span, 2 tree crop, and 2 double span types) of multi-hazard resisting vinyl greenhouses and 3 types(ie., standard, coast, and mountain types) of livestock sheds are considered. All volcanic ash fragilities estimated in this study were fitted by using parameters of the GEV(generalized extreme value) distribution function, and the obtained parameters were complied into a database to be used in future. The volcanic ash fragilities obtained in this study are planning to be used to evaluate risk by volcanic ash when Mt. Baekdu erupts.

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Kim, Sang Ug;Lee, Yeong Seob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.567-579
    • /
    • 2015
  • This study performed the non-stationary flood frequency analysis considering time-varying parameters of a probability density function. Also, return period and risk under non-stationary condition were estimated. A stationary model and three non-stationary models using Generalized Extreme Value(GEV) were developed. The only location parameter was assumed as time-varying parameter in the first model. In second model, the only scale parameter was assumed as time-varying parameter. Finally, the both parameters were assumed as time varying parameter in the last model. Relative likelihood ratio test and Akaike information criterion were used to select appropriate model. The suggested procedure in this study was applied to eight multipurpose dams in South Korea. Using relative likelihood ratio test and Akaike information criterion it is shown that the inflow into the Hapcheon dam and the Seomjingang dam were suitable for non-stationary GEV model but the other six dams were suitable for stationary GEV model. Also, it is shown that the estimated return period under non-stationary condition was shorter than those estimated under stationary condition.

Analysis of the Variation Pattern of the Wave Climate in the Sokcho Coastal Zone (속초 연안의 파랑환경 변화양상 분석)

  • Cho, Hong-Yeon;Jeong, Weon-Mu;Baek, Won-Dae;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-127
    • /
    • 2012
  • Exploratory data analysis was carried out by using the long-term wave climate data in Sokcho coastal zone. The main features found in this study are as follows. The coefficient of variations on the wave height and period are about 0.11 and 0.02, respectively. It also shows that the annual components of the wave height and period are dominant and their amplitudes are 0.24 m and 0.56 seconds, respectively. The amount of intra-annual variation range is about two times greater than that of the inter-annual variation range. The distribution shapes of the wave data are very similar to the log-normal and GEV(generalized extreme value) functions. However, the goodness-of-fit tests based on the KS test show as "rejected" for all suggested density functions. Then, the structure of the timeseries wave height data is roughly estimated as AR(3) model. Based on the wave duration results, it is clearly shown that the continuous and maximum duration is decreased as a power function shape and the total duration is exponentially decreased. Meanwhile, the environment of the Sokcho coastal zone is classified as a wave-dominated environment.

Bias Correction of RCP-based Future Extreme Precipitation using a Quantile Mapping Method ; for 20-Weather Stations of South Korea (분위사상법을 이용한 RCP 기반 미래 극한강수량 편의보정 ; 우리나라 20개 관측소를 대상으로)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.133-142
    • /
    • 2012
  • The objective of this study was to correct the bias of the Representative Concentration Pathways (RCP)-based future precipitation data using a quantile mapping method. This method was adopted to correct extreme values because it was designed to adjust simulated data using probability distribution function. The Generalized Extreme Value (GEV) distribution was used to fit distribution for precipitation data obtained from the Korea Meteorological Administration (KMA). The resolutions of precipitation data was 12.5 km in space and 3-hour in time. As the results of bias correction over the past 30 years (1976~2005), the annual precipitation was increased 16.3 % overall. And the results for 90 years (divided into 2011~2040, 2041~2070, 2071~2100) were that the future annual precipitation were increased 8.8 %, 9.6 %, 11.3 % respectively. It also had stronger correction effects on high value than low value. It was concluded that a quantile mapping appeared a good method of correcting extreme value.