• Title/Summary/Keyword: GENROU

Search Result 2, Processing Time 0.016 seconds

Study on the Application of Advanced Generator Models in Korean Power Systems (국내 전력계통에 개선된 발전기 모델 적용에 관한 연구)

  • Kim, Soobae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.285-291
    • /
    • 2017
  • This paper proposes the use of advanced generator models in the studies of Korean power systems to accurately represent the dynamic behaviors of synchronous generators and thus to achieve a better match between transient stability simulations and reality. In the paper, GENTPF and GENTPJ models are described which have appeared over the last decade in the WECC system. Those advanced models are compared with conventional synchronous generator models such as GENROU and GENSAL, which have been used in dynamic studies of Korean power systems. The advancements are investigated by recognizing the differences in block diagram, saturation modeling, and network interface equations. Simulation comparisons between conventional and advanced models in Korean power systems are then provided. Clear distinctions identified in the simulation results demonstrate the necessity of the use of advanced generator models in Korean power system.

Characteristic Tests on the Gas Turbine Generator System for Determination and Verification of Model Parameters in a Combined Cycle Power Plant (복합화력발전소 가스터빈 발전기계통 모델정수 도출 및 검증을 위한 특성시험)

  • Kim, Jong Goo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2021
  • In this study, a technical characteristic test was conducted on the gas turbine generator system of Seoincheon Combined cycle no.6 to derive and verify the model constants. As a result of the generator maximum/minimum reactive power limit test, the maximum reactive power limit is 80 MVar and the minimum is -30 MVar. The generator uses the GENROU model, the field time constant (T'do) is 4.077 s, and the inertial constant (H) is 5.461 P.U. Excitation system used ESST4B model to derive and verify model constants by simulating no-load 2% AVR step test, PSS modeling derived from PSS2A model constants, and simulated and compared measurement data measured when PSS off/on Did. The GGOV1 model was used for the governor-turbine, and the numerical stability of the determined governor-turbine model constant was verified by simulating a 10% governor step test through the PSS/E simulation program