• 제목/요약/키워드: GEM 검출기

Search Result 8, Processing Time 0.019 seconds

Research of Efficiency for Gas Electron Multiplier Detector to Monitor Low Energy Gamma-Ray and Beta-Ray (낮은 에너지 감마선과 베타선 모니터링을 위한 Gas Electron Multiplier 검출기의 효율성에 대한 연구)

  • Lee, Soonhyouk;Jung, Jae Hoon;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.95-99
    • /
    • 2014
  • Radiation monitoring is one of the most important process in all places where radioactive material is used including hospital. In this preliminary study, we made GAS electron multiplier (GEM) detector and acquired relative efficiencies in order to see if GEM detector can be useful in radiation monitoring system. The relative efficiency was acquired by using the ratio of GEM detector efficiency to CdTe detector efficiency. The relative efficiency of 72% and 4% was acquired for beta-ray and gamma-ray respectively.

Design of a High Efficiency Neutron Detector Using a GEM (GEM을 이용한 고효율 중성자 검출기 설계)

  • Kim, Yong-Kyun;Park, Se-Hwan;Kang, Sang-Mook;Chung, Chong-Eun
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.35-37
    • /
    • 2005
  • The radiation detector research group at KAERI has developed a high efficiency neutron detector using a Gas Electron Multiplier (GEM). The double GEM was fabricated and operated in an Ar/Isobutane mixture. For an application to a high efficiency neutron detector, $^6Li\;or\;^{10}B$ neutron converters coated on each surface of the multi GEM foils were considered. The optimized thickness of the thin film for a neutron detection was calculated with the MCNP and SRIM. The neutron efficiency was calculated by changing the chemical components of the thin film, and the thickness of the thin film. The thermalized neutrons were measured by a GEM detector with a thin neutron converter on the drift plate.

Calculation of Primary Electron Collection Efficiency in Gas Electron Multipliers Based on 3D Finite Element Analysis (3차원 유한요소해석을 이용한 기체전자증폭기의 1차 전자수집효율의 계산)

  • Kim, Ho-Kyung;Cho, Min-Kook;Cheong, Min-Ho;Shon, Cheol-Soon;Hwang, Sung-Jin;Ko, Jong-Soo;Cho, Hyo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • Gas avalanche microdetectors, such as micro-strip gas chamber (MSGC), micro-gap chamber (MGC), micro-dot chamber (MDOT), etc., are operated under high voltage to induce large electron avalanche signal around micro-size anodes. Therefore, the anodes are highly exposed to electrical damage, for example, sparking because of the interaction between high electric field strength and charge multiplication around the anodes. Gas electron multiplier (GEM) is a charge preamplifying device in which charge multiplication can be confined, so that it makes that the charge multiplication region can be separate from the readout micro-anodes in 9as avalanche microdetectors possible. Primary electron collection efficiency is an important measure for the GEM performance. We have defined that the primary electron collection efficiency is the fractional number of electron trajectories reaching to the collection plane from the drift plane through the GEM holes. The electron trajectories were estimated based on 3-dimensional (3D) finite element method (FEM). In this paper, we present the primary electron collection efficiency with respect to various GEM operation parameters. This simulation work will be very useful for the better design of the GEM.

Implementation of a High Speed GEM frame Synchronization Circuit in the G-PON TC Sublayer Payload (G-PON TC 계층 유료부하 내에서 고속 GEM 프레임 동기회로 구현)

  • Chung, Hae;Kwon, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.469-479
    • /
    • 2009
  • The GEM frame is used a mean to deliver the variable length user data and consists of the header and the payload in the G-PON system. The HEC field of header protects contents of the header and is used to maintain GEM frame synchronization at the same time. When an LCDG (Loss of GEM Channel Delineation) occurs while receiving frames, the receiver have to discard corrupted frames until acquiring the synchronization again. Accordingly, high-speed synchronization method is required to minimize the frame loss. In this paper, we suggest not only a main state machine but a sub-state machine to reduce the frame loss when undetectable errors occurred in the GEM header. Also, we provide a more efficient and fast parallel structure to detect the starting point of the header. Finally, the proposed method is implemented with the FPGA and verified by the logic analyzer.