• Title/Summary/Keyword: GDS (Geomagnetic Depth Sounding)

Search Result 5, Processing Time 0.019 seconds

Interpretation on GDS(Geomagnetic Depth Sounding) data in and around Korean peninsula using 3-D MT modeling (3차원 MT 모델링을 통한 한반도 및 주변의 GDS(Geomagnetic Depth Sounding) 자료 해석)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Ryu, Yong-Gyu;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.124-131
    • /
    • 2005
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine deep geo-electrical structures of the Korean peninsula. In this study, five additive GDS sites acquired in south-eastern area of the Korea were integrated into twelve previous GDS results. In addition, 3-D MT modeling considering the surrounding seas of the Korean peninsula was performed to evaluate sea effect at each GDS site quantitatively. As a result, Observed real induction arrows was not explained by solely sea effect, two conductive structures that are able to explain differences between observed and calculated induction arrows, was suggested. The first conductive structure is the Imjingang Belt, which is thought as a extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at YIN and ICHN sites. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling generated in back-basin region. The effects of the HCL are also confirmed at KZU, KMT101, 107 sites, in the south-eastern of the Korean peninsula.

  • PDF

Interpretation on GDS(Geomagnetic Depth Sounding) Data in and around the Korean Peninsula through the 3-D Sea Effect Modeling

  • Yang, Jun-mo;Kwon, Byung-Doo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.159-169
    • /
    • 2006
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine conductivity anomalies in and around the Korean Peninsula. In this study, new GDS data acquired at the five sites in south-eastern area of the peninsula were incorporated into the previous GDS data. In order to quantitatively interpret observed induction arrows, the 3-D MT modeling considering the surrounding seas of the Korean Peninsula has been performed to evaluate sea effect at each GDS site. The modeling results revealed that the observed real induction arrows were not explained by solely sea effects, consequently two conductive structures that are responsible for the discrepancies between observed and calculated induction arrows were proposed. The first one is the Imjingang Belt, which is thought as an extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at the site YIN and ICHN. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling produced in back-basin region. The effects of the HCL are seen at the site KZU, KMT101, and KMT 107 in the south-eastern region of the Korean Peninsula.

  • PDF

A study on the Difference Arrow of GDS (Geomagnetic Depth Sounding) Survey using 2-D MT (Magneto-Telluric) Modeling (2차원 MT(Magneto-Telluric)모델링을 이용한 지자기 수직탐사(Geomagnetic Depth Sounding)에서의 차이 지시자의 연구)

  • 양준모;오석훈;이덕기;윤용훈
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • Two-dimensional MT (Magneto-Telluric) modeling is performed to verify the validity of difference arrow for GDS(Geomagnetic Depth Sounding) survey. The electromagnetic mutual coupling between the sea and in-land conductor is used as a criterion that judges the validity of difference arrow. In this study, the mutual coupling between them is examined according to the spatial distance between them and the period of magnetic variations. The difference arrow is valid for conductors located at surface which are far from the sea or when the long period is used, but the mutual coupling is weak for buried conductor in all the periods. However, when a conductor extends vertically down to the deep part, the validity of difference arrow is in doubt, since the strong mutual coupling influences up to the long period. Therefore, to remove the known conductor effect such as sea effect from the observed induction arrow, the mutual coupling between them must be examined and the caution must be exercised in interpreting the resultant difference arrow if mutual coupling between them is strong.

Geomagnetic Depth Sounding to Investigate the Trend of Electrical Conductivity in and around the Korean Peninsula (지자기 수직 탐사에 의한 한반도 주변의 전기전도도 구조)

  • 오석훈;양준모;이덕기;남재철
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.437-444
    • /
    • 2002
  • Geomagnetic depth sounding (GDS) was performed to analyze the characteristics of deep resistivity structure in and around the Korean Peninsula. The data that have 0.01 nT precision were collected from 5 geomagnetic observatories and measured every one or five second. In this study, amount of 16 days of geomagnetic data were used for analyzing. Generally the sea affects the GDS data seriously due to its high conductivity. However, though the Korean peninsula is surrounded by seas in three sides, the results given by induction arrow strongly show that the trend of electrical conductivity at neighborhood of the Korean Peninsula is reigned by some geological features. Also it is believed that observation in Jeju island is related with the electrical structure around the East China Sea.

A study on the characteristics of difference arrow using three-dimensional MT(Magneto-Telluric) modeling (3차원 전도체의 공간적 위치 및 크기에 따른 차이 지시자의 특성 연구)

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 2002
  • The three-dimensional MT(Magneto-Telluric) modeling is performed to examine the validity of difference arrow of GDS(Geomagnetic Depth Sounding) survey, In this paper, we investigate the validity of the difference arrow on three configurations of conductors; which is located 1) at surface, 2) at the deep part and 3) vertically extended f개m surface to the deep part, respectively, For conductors located at surface, the validity of difference arrows is certified in our numerical model when long periods over 40 minutes are used or the distance between sea and conductor is over 150 km. However, for conductors located at the deep part, the validity of difference arrow is dependent on the size of conductors. Further, if the size of conductor is adequately larger than that of our model, we recognize the possibility that the mutual coupling of them influences up to longer periods, Moreover, in case of conductors which is vertically extended from surface to the deer part, the mutual coupling of them is reinforced for all periods, especially for longer periods, so that the validity of difference arrow is considerably in doubt. Therefore, to remove the known conductor effect such as the sea effect from the observed induction arrow, the mutual coupling between them must be examined. The difference arrow that certifies the validity in this way can only provide the Subsurface information based on physical supports.

  • PDF