Geomagnetic Depth Sounding to Investigate the Trend of Electrical Conductivity in and around the Korean Peninsula

지자기 수직 탐사에 의한 한반도 주변의 전기전도도 구조

  • 오석훈 (기상연구소 해양기상지진연구실) ;
  • 양준모 (기상연구소 해양기상지진연구실) ;
  • 이덕기 (기상연구소 해양기상지진연구실) ;
  • 남재철 (기상연구소 해양기상지진연구실)
  • Published : 2002.10.01

Abstract

Geomagnetic depth sounding (GDS) was performed to analyze the characteristics of deep resistivity structure in and around the Korean Peninsula. The data that have 0.01 nT precision were collected from 5 geomagnetic observatories and measured every one or five second. In this study, amount of 16 days of geomagnetic data were used for analyzing. Generally the sea affects the GDS data seriously due to its high conductivity. However, though the Korean peninsula is surrounded by seas in three sides, the results given by induction arrow strongly show that the trend of electrical conductivity at neighborhood of the Korean Peninsula is reigned by some geological features. Also it is believed that observation in Jeju island is related with the electrical structure around the East China Sea.

한반도에 위치한 5곳의 정밀 지자기 관측소에서 수집된 자료를 이용하여 지자기 수직탐사를 수행하였다. 측정된 지자기 자료는 0.01 nT의 정밀도를 가지며, 1초 혹은 5초 간격으로 측정되었고 이번 해석을 위해 16일 분량의 자료를 이용하였다. 지자기 수직 탐사는 그 특성 상 주변에 해양이 존재할 경우 그에 의한 영향이 매우 크지만, 본 연구를 위해 관측자료를 처리한 결과, 인근 해안에 의한 효과보다는 심부의 전기적 구조에 의한 효과를 많이 반영하였다. 자료 해석 결과, 전기 전도체의 방향을 표시하는 유도 표시자(induction arrow)는 한반도의 대표적 지구조를 가리켰으며, 이를 통해 한반도의 심부 구조를 지전기학적으로 이해할 수 있는 증거를 확보할 수 있었다.

Keywords

References

  1. Brazil. Geopys. Res. Lett. v.27 Magnetotelluric and geomagnetic depth soundings around the Torres Syscline hinge, Southeast Parana Basin Antonio L. Padilha;Icaro Vitorello https://doi.org/10.1029/2000GL011507
  2. Phys. Earth Planet. Inter. v.124 Magnetotelluric and geomagnetic modelling reveals zones of very high electrical conductivity in upper crust of Central Java Arne Hoffmann-Rothe;Oliver Ritter;Volker Haak https://doi.org/10.1016/S0031-9201(01)00196-0
  3. Geopys. J. R. astr. Soc. v.69 Geomagnetic induction and conductive structures in north-west India Arora, B.R.;Lilley, F.E.M.;Sloane, M.N.;Singh, B.P.;Srivastava, B.J.;Prasad, S.N. https://doi.org/10.1111/j.1365-246X.1982.tb04960.x
  4. Phys. Earth Planet. Inter. v.81 Numerical estimations of the sea effect on the distribution of induction arrows in the Japanese island arc. Bapat, V.J.;Segawa, J.;Honkura;P. Tarits https://doi.org/10.1016/0031-9201(93)90132-S
  5. Phys. Earth Planet. Inter. v.116 Mapping the Carpentaria conductivity anomaly in northern Australia. Chamalaun, F.H.;Lilley, F.E.M.;Wang, L.J. https://doi.org/10.1016/S0031-9201(99)00126-0
  6. Phys. Earth Planet. Inter. v.99 EM responses of an elongated conductor near an ocean-analogue model studies. Chen, J.;Dosso, H.W. https://doi.org/10.1016/S0031-9201(96)03180-9
  7. Jour. Petrol. Soc. Korea. v.4 High-pressure amphibolite of the Imjingang belt in the Yeoncheon-Cheongok area. Cho, M.;S.T. Kwon;J.H. Ree;E. Nakamura
  8. Phys. Earth Planet. Inter. v.97 Difference electromagnetic induction arrow responses in New Zealand. Dosso, H.W.;Chen, J.;Chamalaun, F.H.;McKnight, J.D. https://doi.org/10.1016/0031-9201(95)03133-2
  9. Geophys. J. Int. v.140 Induction arrow from offshore floating magnetometers using land reference data. Hitchman, A.P.;Lilley, F.E.M.;Milligan, P.R. https://doi.org/10.1046/j.1365-246x.2000.00042.x
  10. Jour. Korean Inst. Mining Geol. v.2 Geology and tectonics of the mid-central region of South Korea. Kim, O.J.
  11. Jour. Korean Inst. Mining Geol. v.18 A study on the crustal structure of the southern Korean peninsula through a gravity analysis. Kwon, B.D.;Yang, S.Y.
  12. Jour. Korean Geophys. Soc. v.2 Geoelectric surveys in the southern part of the Yangsan fault. Lee, K.;Han, W-S.
  13. Jour. Geol. Soc. Korea. v.30 Geoelctric studies in Gongju and Imsil areas: Geophysical studies on major faults in the Ogcheon belt. Lee, K.;Kim, H-S.
  14. J. Geol. Soc. Korea. v.15 On crustal structure of the Korean peninsula. Lee, K.
  15. Korea Science and Engineering Foundation, 996-0400-001-2. Mantle diapir beneath the marginal sea between Korean Peninsula and Kyushu Island. Min, K.D.
  16. Earth Planets Sci. Lett. v.146 Lower crustal erosion induced by mantle diapiric upwelling. Nakada, M.;T. Yanagi;S. Maeda https://doi.org/10.1016/S0012-821X(96)00245-2
  17. Geophys. Res. Lett. v.28 Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan back arc. Ogawa, Y.;Mishima, M.;Goto, T.;Satoh, H.;Oshiman, N.;Kasaya, T.;Takahashi, Y.;Nishitani, T.;Sakanaka, S.;Uyeshima, M.;Takahashi, Y.;Honkura, Y.;Matsushima, M. https://doi.org/10.1029/2001GL013269
  18. J. Geomagn. Geoelectr. v.15 Conductivity anomalies in Austrailia and the ocean-effect. Parkinson, W.D. https://doi.org/10.5636/jgg.15.222
  19. Phys. Earth Planet. Inter. v.119 Magnetovariational soundings across the South Island of New Zealand: difference induction arrow and the Southern Alps conductor. Pringle, D.;Ingham, M.;McKnight, J.D.;Chamalaun, F.H. https://doi.org/10.1016/S0031-9201(99)00173-9
  20. Solid earth geomagnetism Rikitake, T.;Honkura, Y.
  21. Earth Planets and Space v.53 Crust and upper mantle resistivity structure in the southwestern end of the Kuril Arc as revealed by the joint analysis of conventional MT and network MT data. Satoh, H.;Nishida, Y.;Ogawa, Y.;Takada, M.;M. Uyeshima https://doi.org/10.1186/BF03351680
  22. Japan. Geophys. Res. Lett. v.24 Electrical conductivity anomalies beneath the western sea of Kyushu. Shimoizumi, M.;Mogi, T.;Nakada, M.;Yukutake, T.;Handa, S.;Tanaka, Y.;H. Utada https://doi.org/10.1029/97GL01542
  23. Geophysics v.37 The magnetrotelluric methods in the exploration of sedimentary basins. Vozoff, K. https://doi.org/10.1190/1.1440255