• 제목/요약/키워드: GDF15

검색결과 18건 처리시간 0.017초

Treatment of Exogenous GDF9 and BMP15 during In Vitro Maturation of Oocytes increases the Cell Number of Blastocysts in Pigs

  • Kim, Min Ju;Kim, Young June;Shim, Hosup
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.9-12
    • /
    • 2016
  • Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors that regulate many critical processes involved in early folliculogenesis and oocyte maturation. In this study, effects of GDF9 and BMP15 treatment during in vitro maturation of porcine oocytes upon development after parthenogenetic activation were investigated. Neither GDF, BMP15 alone nor in combination affects the number and viability of cumulus cells or the rates of oocyte maturation and blastocyst development. However, the treatment of GDF9 on porcine oocytes increased the number of trophectodermal (TE) cells of blastocysts derived from activated oocytes (P<0.05). The treatment of BMP15 increased the cell numbers of both inner cell mass (ICM) and TE cells (P<0.05). The treatment with the combination of GDF9 and BMP15 further increased the numbers of ICM and TE cells, compared with GDF9 or BMP15 treatment alone (P<0.05). In conclusion, the treatment of GDF9 or BMP15 (or both) enhanced the quality of blastocysts via the increased number of ICM and/or TE cells.

P3H4 promotes renal cell carcinoma progression and suppresses antitumor immunity via regulating GDF15-MMP9-PD-L1 axis

  • Tian, Shuo;Huang, Yan;Lai, Dong;Wang, Hanfeng;Du, Songliang;Shen, Donglai;Chen, Weihao;Xuan, Yundong;Lu, Yongliang;Feng, Huayi;Zhang, Xiangyi;Zhao, Wenlei;Wang, Chenfeng;Wang, Tao;Wu, Shengpan;Huang, Qingbo;Niu, Shaoxi;Wang, Baojun;Ma, Xin;Zhang, Xu
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.639-652
    • /
    • 2022
  • The prolyl 3-hydroxylase family member 4 (P3H4), is associated with post-translational modification of fibrillar collagens and aberrantly activated in cancer leading to tumor progression. However, its role in clear cell renal cell carcinoma (ccRCC) is still unknown. Here we reported that P3H4 was highly expressed in renal cancer tissues and significantly positive correlated with poor prognosis. Knockdown of P3H4 inhibited the proliferation, migration and metastasis of renal cancer cells in vitro and in vivo, and also, overexpression of it enhanced the oncogenic process. Mechanistically, P3H4 depletion decreased the levels of GDF15-MMP9 axis and repressed its downstream signaling. Further functional studies revealed that inhibition of GDF15 suppressed renal cancer cell growth and GDF15 recombinant human protein (rhGDF15) supplementation effectively rescued the inhibitory effect induced by P3H4 knockdown. Moreover, decreased levels of MMP9 caused by inhibition of P3H4-GDF15 signaling constrained the expression of PD-L1 and suppression of P3H4 accordingly promoted anti-tumor immunity via stimulating the infiltration of CD4+ and CD8+ T cells in syngeneic mice model. Taken together, our findings firstly demonstrated that P3H4 promotes ccRCC progression by activating GDF15-MMP9-PD-L1 axis and targeting P3H4-GDF15-MMP9 signaling pathway can be a novel strategy of controlling ccRCC malignancy.

Postnatal Expression of Growth/Differentiation Factor-8 (GDF-8) Gene in European and Asian Pigs

  • Lin, C.S.;Wu, Y.C.;Sun, Y.L.;Huang, M.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권9호
    • /
    • pp.1244-1249
    • /
    • 2002
  • Myostatin (growth differentiation factor (GDF)-8), is one member of the transforming growth factor $\beta$ superfamily. Investigations of GDF-8 null mice and double-muscled cattle revealed that GDF-8 has a profound influence upon skeletal muscle growth. Therefore, the GDF-8 effect upon the productive performance of pigs is worth exploring. In the present study, the nucleotide sequences and expression levels of GDF-8 genes in European pigs (Landrace and Duroc) and Asian pigs (Taoyuan and Small-ear) were evaluated. Based upon their genetic background these breeds possess significantly distinct growth rate and muscle productionphenotypes. Our sequence data showed that the nucleotide sequences of European and Asian pigs were 100% similar. Postnatal expression of GDF-8 gene in skeletal muscles, from birth to 12 mo of age, among different breeds was measured. GDF-8 expression levels in the longissimus muscle of neonatal European breed littermates were the highest, however it declined significantly (p<0.05) at 1 and 3 mo, and then increased gradually at 6 to 12 mo. The Asian breeds, however, GDF-8 expression level increased markedly at 3 mo and maintained a constant level thereafter. The results indicate that rather than polymorphism within the GDF-8 functional sequence between European and Asia breeds, it was relative to the gene regulation in postnatal muscle growth.

Prognostic Value of Serum Growth Differentiation Factor-15 in Patients with Chronic Obstructive Pulmonary Disease Exacerbation

  • Kim, Miyoung;Cha, Seung-Ick;Choi, Keum-Ju;Shin, Kyung-Min;Lim, Jae-Kwang;Yoo, Seung-Soo;Lee, Jaehee;Lee, Shin-Yup;Kim, Chang-Ho;Park, Jae-Yong;Yang, Dong Heon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제77권6호
    • /
    • pp.243-250
    • /
    • 2014
  • Background: Information regarding prognostic value of growth differentiation factor 15 (GDF-15) and heart-type fatty acid-binding protein (H-FABP) in patients with chronic obstructive pulmonary disease (COPD) exacerbation is limited. The aim of this study was to investigate whether serum levels of GDF-15 and H-FABP predict an adverse outcome for COPD exacerbation. Methods: Clinical variables, including serum GDF-15 and H-FABP levels were compared in prospectively enrolled patients with COPD exacerbation that did or did not experience an adverse outcome. An adverse outcome included 30-day mortality and need for endotracheal intubation or inotropic support. Results: Ninety-seven patients were included and allocated into an adverse outcome (n=10) or a control (n=87) group. Frequencies of mental change and $PaCO_2$>37 mm Hg were significantly higher in the adverse outcome group (mental change: 30% vs. 6%, p=0.034 and $PaCO_2$>37 mm Hg: 80% vs. 22%, p<0.001, respectively). Serum GDF-15 elevation (>1,600 pg/mL) was more common in the adverse outcome group (80% vs. 43%, p=0.041). However, serum H-FABP level and frequency of serum H-FABP elevation (>755 pg/mL) did not differ between the two groups. Multivariate analysis showed that an elevated serum GDF-15 and $PaCO_2$>37 mm Hg were significant predictors of an adverse outcome (odds ratio [OR], 25.8; 95% confidence interval [CI], 2.7-243.8; p=0.005 and OR, 11.8; 95% CI, 1.2-115.3; p=0.034, respectively). Conclusion: Elevated serum GDF-15 level and $PaCO_2$>37 mm Hg were found to predict an adverse outcome independently in patients with COPD exacerbation, suggesting the possibility that serum GDF-15 could be used as a prognostic biomarker of COPD exacerbation.

Association of Polymorphisms in Fecundity Genes of GDF9, BMP15 and BMP15-1B with Litter Size in Iranian Baluchi Sheep

  • Moradband, F.;Rahimi, G.;Gholizadeh, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1179-1183
    • /
    • 2011
  • The incidence of mutation in three loci of GDF9, BMP15 and BMP15-1B and their effects on litter sizes was evaluated in Baluchi sheep. Wild-type alleles were detected for BMP15 and BMP15-1B loci and all individuals were found to be as non-carriers for FecB and $FecX^G$ mutations but, a G to A nucleotide substitution was found in GDF9 locus. The frequency of $FecG^+$ (0.82) wild type allele was higher than the frequency of $FecG^l$ (0.18) mutant allele and the frequencies of $FecG^+/FecG^+$, $FecG^+/FecG^1$ and $FecG^1/FecG^1$ genotypes were 0.72, 0.20 and 0.08, respectively in GDF9 locus. The heterozygous ($FecG^+/FecG^1$) and homozygous ($FecG^+/FecG^+$) non-carrier ewes had 0.35 and 0.21 more lambs than the homozygous ($FecG^1/FecG^1$) carrier ewes, respectively (p<0.05). In addition to the finding of segregation of non-additive gene effect on litter size in the previous study in Baluchi sheep, these findings for the first time shows that the $FecG^1$ gene has a major effect on litter size in this breed.

A Study on BMPR-IB Genes of Bayanbulak Sheep

  • Zuo, Beiyao;Qian, Hongguang;Wang, Ziyu;Wang, Xu;Nisa, Noor;Bayier, Aierdin;Ying, Shijia;Hu, Xiaolong;Gong, Changhai;Guo, Zhiqin;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권1호
    • /
    • pp.36-42
    • /
    • 2013
  • The average twin lambing rate of Bayanbulak sheep is 2% to 3%. However, a flock of sheep with a close genetic relationship and an average of 2 to 3 lambs per birth has been found recently. To determine the major genes controlling the prolificacy of the flock in the present study, the flock was designated A while 100 normal Bayanbulak sheep were randomly selected to comprise the control flock B. Ligase detection reaction method was applied to detect and analyze the 10 mutational loci of the 3 candidate prolificacy genes including bone morphogenetic protein type I receptors, bone morphogenetic protein 15, and growth differentiation factor 9. The 10 mutational loci are as follows: FecB locus of the BMPR-IB gene; $FecX^I$, $FecX^B$, $FecX^L$, $FecX^H$, $FecX^G$, and $FecX^R$ of the BMP15 gene; and G1, G8, and FecTT of the GDF9 gene. Two mutations including BMPR-IB/FecB and GDF9/G1 were found in Bayanbulak sheep. Independence test results of the two flocks demonstrate that the FecB locus has a significant effect on the lambing number of Bayanbulak sheep. However, the mutation frequency of the G1 locus in GDF9 is very low. Independence test results demonstrate that the GDF9 locus does not have a significant impact on the lambing performance of Bayanbulak sheep. Among the 10 detected loci, BMPR-IB/FecB is the major gene that influences the high lambing rate of Bayanbulak sheep.

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권8호
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Gonadotropins Improve Porcine Oocyte Maturation and Embryo Development through Regulation of Maternal Gene Expression

  • Wang, Qing-Ling;Zhao, Ming-Hui;Jin, Yong-Xun;Kim, Nam-Hyung;Cui, Xiang-Shun
    • 한국수정란이식학회지
    • /
    • 제28권4호
    • /
    • pp.361-371
    • /
    • 2013
  • The present study assessed the effect of FSH and LH on oocyte meiotic, cytoplasmic maturation and on the expression level and polyadenylation status of several maternal genes. Cumulus-oocyte complexes were cultured in the presence of FSH, LH, or the combination of FSH and LH. Significant cumulus expansion and nuclear maturation was observed upon exposure to FSH alone and to the combination of FSH and LH. The combination of FSH and LH during entire IVM increased the mRNA level of four maternal genes, C-mos, Cyclin B1, Gdf9 and Bmp15, at 28 h. Supplemented with FSH or LH significantly enhanced the polyadenylation of Gdf9 and Bmp15; and altered the expression level of Gdf9 and Bmp15. Following parthenogenesis, the exposure of oocytes to combination of FSH and LH during IVM significantly increased cleavage rate, blastocyst formation rate and total cell number, and decreased apoptosis. In addition, FSH and LH down-regulated the autophagy gene Atg6 and upregulated the apoptosis gene Bcl-xL at the mRNA level in blastocysts. These data suggest that the FSH and LH enhance meiotic and cytoplasmic maturation, possibly through the regulation of maternal gene expression and polyadenylation. Overall, we show here that FSH and LH inhibit apoptosis and autophagy and improve parthenogenetic embryo competence and development.

Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerate-induced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism

  • Asghari, Reza;Shokri-Asl, Vahid;Rezaei, Hanieh;Tavallaie, Mahmood;Khafaei, Mostafa;Abdolmaleki, Amir;Seghinsara, Abbas Majdi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.245-254
    • /
    • 2021
  • Objective: In humans, polycystic ovary syndrome (PCOS) is an androgen-dependent ovarian disorder. Aberrant gene expression in folliculogenesis can arrest the transition of preantral to antral follicles, leading to PCOS. We explored the possible role of altered gene expression in preantral follicles of estradiol valerate (EV) induced polycystic ovaries (PCO) in a mouse model. Methods: Twenty female balb/c mice (8 weeks, 20.0±1.5 g) were grouped into control and PCO groups. PCO was induced by intramuscular EV injection. After 8 weeks, the animals were killed by cervical dislocation. Blood serum (for hormonal assessments using the enzyme-linked immunosorbent assay technique) was aspirated, and ovaries (the right ovary for histological examinations and the left for quantitative real-time polymerase) were dissected. Results: Compared to the control group, the PCO group showed significantly lower values for the mean body weight, number of preantral and antral follicles, serum levels of estradiol, luteinizing hormone, testosterone, and follicle-stimulating hormone, and gene expression of TGFB1, GDF9 and BMPR2 (p<0.05). Serum progesterone levels were significantly higher in the PCO animals than in the control group (p<0.05). No significant between-group differences (p>0.05) were found in BMP6 or BMP15 expression. Conclusion: In animals with EV-induced PCO, the preantral follicles did not develop into antral follicles. In this mouse model, the gene expression of TGFB1, GDF9, and BMPR2 was lower in preantral follicles, which is probably related to the pathologic conditions of PCO. Hypoandrogenism was also detected in this EV-induced murine PCO model.

Effect of endometrial cell-conditioned medium and platelet-rich plasma on the developmental competence of mouse preantral follicles: An in vitro study

  • Taghizabet, Neda;Bahmanpour, Soghra;Zarei-fard, Nehleh;Mohseni, Gholamreza;Aliakbari, Fereshteh;Dehghani, Farzaneh
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권3호
    • /
    • pp.175-184
    • /
    • 2022
  • Objective: The aim of this study was to evaluate the impacts of platelet-rich plasma (PRP) and conditioned medium (CM) derived from endometrial stromal cells on mouse preantral follicle culture in a two-dimensional system to produce competent mature oocytes for fertilization. Methods: In total, 240 preantral follicles were isolated from female mouse ovarian tissue and divided into four groups. The preantral follicles were isolated three times for each group and then cultured, respectively, in the presence of alpha minimum essential medium (control), PRP, CM, and PRP+CM. The in vitro growth, in vitro maturation, and cleavage percentage of the preantral follicles were investigated. Immunocytochemistry (IHC) was also conducted to monitor the meiotic progression of the oocytes. Additionally, the mRNA expression levels of the two folliculogenesis-related genes (Gdf9 and Bmp15) and two apoptosis-related genes (Bcl2 and Bax) were investigated using real-time polymerase chain reaction. Results: In the PRP, CM, and PRP+CM groups, the preantral follicle maturation (evaluated by identifying polar bodies) were greater than the control group. The cleavage rate in the CM, and PRP+CM groups were also greater than the control group. IHC analysis demonstrated that in each treatment group, meiotic spindle was normal. In the PRP+CM group, the gene expression levels of Bmp15, Gdf9, and Bcl2 were greater than in the other groups. The Bax gene was more strongly expressed in the PRP and control groups than in the other groups. Conclusion: Overall, the present study suggests that the combination of CM and PRP can effectively increase the growth and cleavage rate of mouse preantral follicles in vitro.