• Title/Summary/Keyword: GCPs

Search Result 149, Processing Time 0.033 seconds

The Analysis of 3D Position Accuracy of Multi-Looking Camera (다각촬영카메라의 3차원 위치정확도 분석)

  • Go, Jong-Sik;Choi, Yoon-Soo;Jang, Se-Jin;Lee, Ki-Wook
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.33-42
    • /
    • 2011
  • Since the method of generating 3D Spatial Information using aerial photographs was introduced, lots of researches on effective generation methods and applications have been performed. Nadir and oblique imagery are acquired in a same time by Pictometry system, and then 3D positioning is processed as Multi-Looking Camera procedure. In this procedure, the number of GCPs is the main factor which can affect the accuracy of true-orthoimage. In this study, 3D positioning accuracies of true-orthoimages which had been generated using various number of GCPs were estimated. Also, the standard of GCP number and distribution were proposed.

Bias Compensation of IKONOS Geo-level Satellite Imagery Using the Digital Map (수치지도를 이용한 IKONOS Geo-level 위성영상의 편의보정)

  • Lee Hyo Sung;Shin Sok Hyo;Ahn Ki Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • This paper describes capability of utilizing ground control points(GCPs) obtained from 1:1,000 and 1:5,000 digital vector maps to correct image coordinates which have errors due to bais rational polynomial coefficient(RPC) of IKONOS Geo-level stereo images. The accuracy of the bias-corrected images was improved to approximately 4m and 2m in planimetry and height, respectively. The accuracy was also compared with results from using GCPs obtained by GPS surveying. In consequence, bias-compensated IKONOS sereo imagery was evaluated to satisfy generating topographic map 1:10,000.

EFFECTS OF CAFFEINE AND 2,5-DI-(tert-BUTYL)-1,4-BENZOHYDROQUINONE ON BLUE LIGHT-DEPENDENT $H^+$ PUMPING IN GUARD CELL PROTOPLASTS FROM Vicia faba L.

  • Goh, Chang-Hyo;Shimazaki, Ken-Ichiro
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.35-40
    • /
    • 1997
  • The sensory transduction processes of blue light in guard cells have been suggested the involvement of Ca$^{2+}$/calmodulin-dependent myosin light chain kinase (MLCK) or MLCK-like proteins. The source of Ca$^{2+}$ required for the signal transduction process was investigated in guard cell protoplasts (GCPs). The GCPs showed the typical H$^+$ pumping activity by blue light (200 $\mu$mol m$^{-2}$ s$^{-1}$) and fusicoccin (10 $\mu$M) under background red light (600 $\mu$mol m$^{-2}$ s$^{-1}$). The blue light-dependent H$^+$ pumping was not significantly affected by the externally changed Ca$^{2+}$ concentrations. The addition of 1 mM Ca$^{2+}$ in the bathing medium ratherly inhibited the H$^+$ pumping. In contrast, the blue light-dependent H$^+$ pumping was inhibited by caffeine and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ), inhibitor of C$^{2+}$-ATPase in endoplasmic reticulum (ER) without inhibiting the H $^+$ pump. The inhibition by caffeine and BHQ was fully reversible. The extent of inhibition by caffeine and BHQ was larger when they were added together than when added separately. The results suggest that Ca$^{2+}$ required for the blue light-dependent H$^+$ pumping may be released from the intracellular Ca$^{2+}$ stores, probably ER in guard cells.

  • PDF

Analysis of Factors Affecting Performance of Integrated INS/SPR Positioning during GPS Signal Blockage

  • Kang, Beom Yeon;Han, Joong-hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2014
  • Since the accuracy of Global Positioning System (GPS)-based vehicle positioning system is significantly degraded or does not work appropriately in the urban canyon, the integration techniques of GPS with Inertial Navigation System (INS) have intensively been developed to improve the continuity and reliability of positioning. However, its accuracy is degraded as INS errors are not properly corrected due to the GPS signal blockage. Recently, the image-based positioning techniques have been started to apply for the vehicle positioning for the advanced in processing techniques as well as the increased the number of cars installing the camera. In this study, Single Photo Resection (SPR), which calculates the camera exterior orientation parameters using the Ground Control Points (GCPs,) has been integrated with the INS/GPS for continuous and stable positioning. The INS/GPS/SPR integration was implemented in both of a loosely and a tightly coupled modes, based on the Extended Kalman Filter (EKF). In order to analyze the performance of INS/SPR integration during the GPS outage, the simulation tests were conducted with a consideration of factors affecting SPR performance. The results demonstrate that the accuracy of INS/SPR integration is depended on magnitudes of the GCP errors and SPR processing intervals. Additionally, the simulation results suggest some required conditions to achieve accurate and continuous positioning, used the INS/SPR integration.

The Geometric Correction of IKONOS Image Using Rational Polynomial Coefficients and GCPs (RPC와 GCP를 이용한 IKONOS 위성영상의 기하보정)

  • 강준묵;이용욱;박준규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • IKONOS satellite images are particularly well suited for stereo feature extraction. But, because IKONOS doesn't offer information about the satellite ephemeris and attitude, we have to use IKONOS RPC(Rational Polynomial Coefficients) data for 3-D feature extraction. In this study, it was intended to increase the accuracy and the efficiency in application of high resolution satellite images. Therefore, this study develop the program to extract 3-D feature information and have analyzed the geometric accuracy of the IKONOS satellite images by means of the change with the number, distribution and height of GCPs. This study will provide basic information for luther studies of the accuracy correction in IKONOS and high resolution satellite images.

Accuracy Evaluation of 3D Slope Model Produced by Drone Taken Images (드론 촬영으로 작성한 비탈면 3차원 모델의 품질 분석)

  • Kang, Inkyu;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.13-17
    • /
    • 2020
  • In the era of the fourth industrial revolution, drones are being used in various civil engineering fields. Currently, the construction and maintenance of slopes are generally managed by manpower. This method has a risk of safety accidents, and it is difficult to accurately evaluate the slope because it is difficult to secure the vision. In this paper, the effects of RTK and GCP on the 3D model of the slope were studied by using digital images taken by the drone. GNSS coordinates were measured for nine points to compare the quality of the slope 3D model, three points of which were used as the check points and the remaining points were used as GCPs. When making the 3D model of the slope using high-accuracy geotagging images using RTK, it was found that the error at the check point decreases as the number of GCP increases. Even if GNSS was used, it was found that the error at the check points of the 3D slope model was not significant when the GCPs were applied. However, it was found that even if high-accuracy geotagging images are used using the RTK module, a significant error occur when the 3D slope model is created without applying GCPs. Therefore, it can be stated that GCP must be applied to create the 3D slope model in which information about the height as well as plane information is important.

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.

A Study on the Enhancement of DEM Resolution by Radar Interferometry (레이더 간섭기법을 이용한 수치고도모델 해상도 향상에 관한 연구)

  • Kim Chang-Oh;Kim Sang-Wan;Lee Dong-Cheon;Lee Yong-Wook;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.287-302
    • /
    • 2005
  • Digital Elevation Models (DEMs) were generated by ERS-l/2 and JERS-1 SAR interferometry in Daejon area, Korea. The quality of the DEM's was evaluated by the Ground Control Points (GCPs) in city area where GCPs were determined by GPS surveys, while in the mountain area with no GCPs, a 1:25,000 digital map was used. In order to minimize errors due to the inaccurate satellite orbit information and the phase unwrapping procedure, a Differential InSAR (DInSAR) was implemented in addition to the traditional InSAR analysis for DEM generation. In addition, DEMs from GTOPO30, SRTM-3, and 1:25,000 digital map were used for assessment the resolution of the DEM generated from DInSAR. 5-6 meters of elevation errors were found in the flat area regardless of the usage and the resolution of DEM, as a result of InSAR analyzing with a pair of ERS tandem and 6 pairs of JERS-1 interferograms. In the mountain area, however, DInSAR with DEMs from SRTM-3 and the digital map was found to be very effective to reduce errors due to phase unwrapping procedure. Also errors due to low signal-to-noise ratio of radar images and atmospheric effect were attenuated in the DEMs generated from the stacking of 6 pairs of JERS-1. SAR interferometry with multiple pairs of SAR interferogram with low resolution DEM can be effectively used to enhance the resolution of DEM in terms of data processing time and cost.

Determination of Physical Camera Parameters from DLT Parameters

  • Jeong Soo;Lee Changno;Oh Jaehong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.233-236
    • /
    • 2004
  • In this study, we analyzed the accuracy of the conversion from DLT parameters to physical camera parameters and optimized the use of DLT model for non-metric cameras in photogrammetric tasks. Using the simulated data, we computed two sets of physical camera parameters from DLT parameters and Bundle adjustment for various cases. Comparing two results based on the RMSE values of check points, we optimized the arrangement of GCPs for DLT.

  • PDF

Mathematics Model of Space Backside Resection Based on Condition Adjustment

  • Song, Weidong;Wang, Weixi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1403-1405
    • /
    • 2003
  • This paper focuses on the image correction under few GCPs, utilizes the collinearity equation, and builds up this mathematics model of space backside resection based on condition adjustment. Then calculates the adjusted elements of exterior orientation by iteration algorithm, and evaluates the precision. And demonstrates the high-precision, affection and wide-supplying-perspective of this model.

  • PDF