The objectives of this study are to develop a framework for selecting multi-GCMs considering Asia monsoon characteristics and assess it's applicability. 12 climate variables related to monsoon climates are selected for GCM selection. The framework for selecting multi-GCMs includes the evaluation matrix of GCM performance based on their capability to simulate historical climate features. The climatological patterns of 12 variables derived from individual GCM over the summer monsoon season during the past period (1976-2005) and they are compared against observations to evaluate GCM performance. For objective evaluation, a rigorous scoring rule is implemented by comparing the GCM performance based on the results of statistics between historical simulation derived from individual GCM and observations. Finally, appropriate 5 GCMs (NorESM1-M, bcc-csm1-m, CNRM-CM5, CMCC-CMS, and CanESM2) are selected in consideration of the ranking of GCM and precipitation performance of each GCM. The selected 5 GCMs are compared with the historical observations in terms of monsoon season and monthly mean to validate their applicability. The 5 GCMs well capture the observational climate characteristics of Asia for the 12 climate variables also they reduce the bias between the entire GCM simulations and the observational data. This study demonstrates that it is necessary to consider various climate variables for GCM selection and, the method introduced in this study can be used to select more reliable climate change scenarios for climate change assessment in the Asia region.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.70-70
/
2011
기후변화 연구는 불확실한 미래를 전망하는 과정이므로 '불확실성'은 모든 기후변화 영향평가의 키워드임에 분명하다. 하지만 불확실성 평가를 위해 IPCC에서 제공되고 있는 수많은 GCM 시나리오를 모두 활용하기에는 많은 시간과 노력이 필요하기 때문에 이를 효율적으로 수행할 수 있는 방법이 필요하다 본 연구에서는 시나리오 저감(scenario reduction)방법을 이용하여, 수많은 GCM 시나리오 대신 몇 개의 대표적 GCM 시나리오로도 충분히 불확실성을 유지할 수 있는 시나리오 저감(scenario reduction)방법을 수립하고 제시하였다. IPCC 기후시나리오 중 20C3M과 A & B 배출시나리오를 바탕으로 생산되는 71개의 GCM 시나리오를 다운로드 받아 월평균 기온과 강수량에 대하여 한반도를 대상으로 분석하였다. 비교결과, 기온 전망은 실측과 비슷한 경향성을 보였으나 강수량은 홍수기를 모의하지 못하는 것으로 나타났다. 시나리오 저감방법은 시나리오 분류(scenario cluster)방법과 시나리오 선정(scenario selection) 방법으로 구성된다. 시나리오 분류방법에서는 k-mean방법을 이용하여 5개의 cluster로 나누었으며, 시나리오 선정방법에서는 GCM 시나리오 선정기법을 조사 분석하여 연구방향과 목적에 따라 GCM 시나리오 선정기법을 선택할 수 있는 표를 제시하고, 이 중 시나리오의 확률밀도함수를 이용하는 PDF method를 적용하였다. 본 연구에서는 불확실성 정량화를 위해 maximum entropy를 이용하였다. 또한 시나리오 저감방법이 불확실성을 유지하는지 비교하기 위해 PDF method를 이용하여 정확성이 높은 순으로 5개의 GCM 시나리오를 선정(best 시나리오)하여 불확실성을 정량화하였다. GCM 시나리오의 분산을 이용하여 maximum entropy를 산정한 결과, 20C3M 배출시나리오에서는 모든 시나리오의 entropy는 3.08, 시나리오 저감방법은 2.75, best 시나리오는 2.28이었으며, 이는 시나리오 저감방법은 모든 시나리오의 89.3%의 불확실성을 설명하고 있으나 best 시나리오는 74.0%밖에 설명하지 못한다는 것을 나타낸다. A & B 배출시나리오에서도 시나리오 저감 방법을 사용한 GCM 시나리오가 best 시나리오보다 모든 시나리오의 불확실성을 더 잘 설명하는 것으로 나타났다. 이와 같이 수많은 GCM 시나리오를 사용하는 것보다 몇 개의 대표 시나리오를 이용하여 기후 변화 불확실성을 유지하면서 미래전망을 할 수 있다면, 매우 효율적으로 기후변화 연구를 수행할 수 있을 것으로 사료된다.
Many climate studies have used the general circulation models (GCMs) for climate change, which can be currently available more than sixty GCMs as part of the Assessment Report (AR5). There are several types of uncertainty in climate studies using GCMs. Various studies are currently being conducted to reduce the uncertainty associated with GCMs, and the bias correction method used to reduce the difference between the simulated and the observed rainfall. Therefore, this study mainly considered climate change scenarios from nine GCMs, and then quantile mapping methods were applied to correct biases in climate change scenarios for each station during the historical period (1970-2005). Moreover, the monthly rainfall for the future period (2011-2100) is obtained from the RCP 4.5 scenario. Based on the bias-corrected rainfall, the standard deviation and the inter-quartile range (IQR) from the first to third quartiles were estimated. For 2071-2100, the uncertainty for the selection of GCMs is larger than that for the selection of bias correction methods and vice versa for 2011-2040. Therefore, this study showed that the selection of GCMs and the bias correction methods can affect the result for the future climate projection.
Climate change will affect not only the crop productivity but also the pattern of rice disease epidemics in Korea. Impact assessments for the climate change are conducted using various climate change scenarios from many global climate models (GCM), such as a scenario from a best GCM or scenarios from multiple GCMs, or a combination of both. Here, we evaluated the feasibility of using a climate change scenario from the best GCM for the impact assessment on the potential epidemics of a rice leaf blast disease in Korea, in comparison to a multi?model ensemble (MME) scenario from multiple GCMs. For this, this study involves analyses of disease simulation using an epidemiological model, EPIRICE?LB, which was validated for Korean rice paddy fields. We then assessed likely changes in disease epidemics using the best GCM selected for individual agro?climatic zones and MME scenarios constructed by running 11 GCMs. As a result, the simulated incidence of leaf blast epidemics gradually decreased over the future periods both from the best GCM and MME. The results from this study emphasized that the best GCM selection approach resulted in comparable performance to the MME approach for the climate change impact assessment on rice leaf blast epidemic in Korea.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.151-151
/
2018
The present study is aimed to quantifying the uncertainty in the general circulation model (GCM) selection and its impacts on hydrology studies in the basins. For this reason, 13 GCMs was selected among the 26 GCM models of the Fifth Assessment Report (AR5) scenarios. Then, the climate data and hydrologic data with two Representative Concentration Pathways (RCPs) of the best model (INMCM4) and worst model (HadGEM2-AO) were compared to understand the uncertainty associated with GCM models. In order to project the runoff, the Precipitation-Runoff Modelling System (PRMS) was driven to simulate daily river discharge by using daily precipitation, maximum and minimum temperature as inputs of this model. For simulating the discharge, the model has been calibrated and validated for daily data. Root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were applied as evaluation criteria. Then parameters of the model were applied for the periods 2011-2040, and 2070-2099 to project the future discharge the five large basins of South Korea. Then, uncertainty caused by projected temperature, precipitation and runoff changes were compared in seasonal and annual time scale for two future periods and RCPs compared to the reference period (1976-2005). The findings of this study indicated that more caution will be needed for selecting the GCMs and using the results of the climate change analysis.
Song, Young Hoon;Chung, Eun Sung;Mang, Ngun Za Luai
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.101-101
/
2019
전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.
In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.25-25
/
2018
본 연구는 충주댐을 대상으로 기후변화에 따른 미래 댐운영에 미치는 영향을 평가하기 위하여 연구 목적에 접합한 GCM 및 상세화 기법 선정을 위한 절차를 적용함으로써 사용자 중심의 기후변화 시나리오 상세화 자료가 유입량의 재현성 평가에 미치는 영향을 분석하였다. 우선 편이보정 전의 29개 원시 GCM에 대한 강수량 및 기온의 순단위 시 공간적 재현성 평가를 통해서 상위 16개 GCM을 선정하였다. 이후 상세화 기법을 선정하기 위해서 유입량 전망에 중요하다고 판단되는 총강수량(prcptot) 및 일최대강수량 (rx1day)을 기후지수(Climate Indices)로 선정하였다. 상세화 기법은 과거기간의 재현성이 평가, 미래기간 시그널 왜곡도 평가, 공간상관성에 대한 재현성 평가를 통해 SQM 기법을 선정하였다. 제한적인 기후변화 전망 자료를 고려하여 과거 30년 기간에 대한 모의결과 월단위 모형효율지수(ME) 및 결정계수 ($R^2$)는 모두 0.92로 만족할 만한 결과를 보여 주었다. GCM 선정에 따른 오차는 원시 GCM을 통해 선정된 16개 GCM을 사용한 경우 유입량 재현성 평가에 있어 가장 좋은 결과를 보였다. 전체적으로 상세화 자료를 유역 모델링에 활용하는 경우 GCM의 선정보다는 상세화 기법의 선정이 전체적인 재현성 평가에 있어서 중요한 것으로 나타났다. 미래기간에 대한 평균 유입량 전망은 모든 RCP 시나리오에서 근 미래 보다는 중간 및 먼 미래 기간 동안에 유입량이 증가하는 경향을 보였다. 또한 모든 미래 기간에 대해여 RCP 8.5 시나리오가 RCP 4.5 시나리오와 비교하여 유입량의 증가가 높을 것으로 전망되었다. 홍수 관리측면에서 중요한 일 최대 유입량의 미래 변동은 평균 유입량과 비교하여 최대 두 배 이상의 높은 변화율을 보였다. 댐운영 측면에서는 연간 총 유입량의 변화보다 시기별 유입량의 변동 특성을 이해하는 것이 중요하며, 평균 유입량 및 일단위 최대 유입량 모두 근 미래 기간에 대해서는 RCP 시나리오 모두 7월 및 8월을 중심으로 유입량이 증가하는 경향을 보였다. 반면 중간 미래에서 먼 미래로 갈수록 평균 및 일단위 최대 유입량 모두 전체 기간에 걸쳐 증가하는 경향을 보였다.
One of the most important issues for projecting future water resources and establishing climate change adaptation strategies is 'uncertainty'. In Korea, climate change research results were very heterogeneous even in a same basin, but there have been few climate change studies dealt with the uncertainty reduction. This is because emission scenarios, GCMs, downscaling, and rainfall-runoff models that were used in the previous studies were almost all different. In this research, fifty one GCM scenarios based A and B emission scenarios were downloaded and then compared with the observed values for a period from January 2001 to December 2008. The downloaded GCM scenarios in general simulated well the observed but did not simulated well the observed precipitation especially for the flood season in Korea. The accuracy of each GCM scenario was measured with the model efficiency, PDF-based, and Relative Entropy methodology. Among the selected GCM scenarios with three methodologies, the four common GCM scenarios(CGCM2.3.2(MRI-M, B1), MIROC3.2medress(NIES, B1), CGCM2.3.2(MRI-M, A2), CGCM2.3.2(MRI-M, A1B) were finally selected. Results of the four selected GCMs were heterogeneity and projected increases of precipitation for the Korean Peninsula by from 27.36% to 12.49%, respectively. It seems very risky to rely a water planning or a management policy on use of a single climate change scenario and from this research results. Therefore, the four selected GCM scenarios proposed quantitatively were considered firstly for the water supply in the dry season and the drought management strategy in the Korean Peninsula for the future.
This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.