• 제목/요약/키워드: GCM selection

검색결과 19건 처리시간 0.032초

아시아 몬순특성을 고려한 다중 GCMs 선정방법 개발 및 평가 (Development and assessment of framework for selecting multi-GCMs considering Asia monsoon characteristics)

  • 김정배;김진훈;배덕효
    • 한국수자원학회논문집
    • /
    • 제53권9호
    • /
    • pp.647-660
    • /
    • 2020
  • 본 연구에서는 아시아 몬순특성을 고려한 전지구모형(General Circulation model, GCM) 선정방법을 개발하고 방법의 적정성을 평가하였다. 몬순기후와 연관된 12개의 기후변수를 선정하였으며, GCM의 과거 기후재현성을 기준으로 모의성능 평가 매트릭스 및 평가체계를 구성하였다. 19개 GCM으로부터 아시아 몬순지역 및 과거(1976 ~ 2005년) 몬순기간에 대한 12개 기후변수를 관측자료와 비교하여 GCM의 기후모의 성능을 평가하였다. GCM의 평가순위 및 강수량 모의성능을 고려하여 적정 5개 GCM (NorESM1-M, bcc-csm1-1-m, CNRM-CM5, CMCC-CMS, CanESM2)을 선정하였다. 과거 몬순계절 및 월 평균 기후에 대하여 선정된 GCM의 기후재현성을 검증하였다. 선정된 5개 GCM은 12개 기후변수에 대한 아시아 지역의 관측 기후특성을 잘 재현하였으며, 전체 GCM을 사용하는 경우에 비해 모의값과 관측값 간의 오차를 줄일 수 있는 것으로 확인되었다.

Maximum entropy를 이용한 GCM 시나리오의 불확실성 평가 (Assessing uncertainties of GCM scenarios using maximum entropy)

  • 이재경;김영오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.70-70
    • /
    • 2011
  • 기후변화 연구는 불확실한 미래를 전망하는 과정이므로 '불확실성'은 모든 기후변화 영향평가의 키워드임에 분명하다. 하지만 불확실성 평가를 위해 IPCC에서 제공되고 있는 수많은 GCM 시나리오를 모두 활용하기에는 많은 시간과 노력이 필요하기 때문에 이를 효율적으로 수행할 수 있는 방법이 필요하다 본 연구에서는 시나리오 저감(scenario reduction)방법을 이용하여, 수많은 GCM 시나리오 대신 몇 개의 대표적 GCM 시나리오로도 충분히 불확실성을 유지할 수 있는 시나리오 저감(scenario reduction)방법을 수립하고 제시하였다. IPCC 기후시나리오 중 20C3M과 A & B 배출시나리오를 바탕으로 생산되는 71개의 GCM 시나리오를 다운로드 받아 월평균 기온과 강수량에 대하여 한반도를 대상으로 분석하였다. 비교결과, 기온 전망은 실측과 비슷한 경향성을 보였으나 강수량은 홍수기를 모의하지 못하는 것으로 나타났다. 시나리오 저감방법은 시나리오 분류(scenario cluster)방법과 시나리오 선정(scenario selection) 방법으로 구성된다. 시나리오 분류방법에서는 k-mean방법을 이용하여 5개의 cluster로 나누었으며, 시나리오 선정방법에서는 GCM 시나리오 선정기법을 조사 분석하여 연구방향과 목적에 따라 GCM 시나리오 선정기법을 선택할 수 있는 표를 제시하고, 이 중 시나리오의 확률밀도함수를 이용하는 PDF method를 적용하였다. 본 연구에서는 불확실성 정량화를 위해 maximum entropy를 이용하였다. 또한 시나리오 저감방법이 불확실성을 유지하는지 비교하기 위해 PDF method를 이용하여 정확성이 높은 순으로 5개의 GCM 시나리오를 선정(best 시나리오)하여 불확실성을 정량화하였다. GCM 시나리오의 분산을 이용하여 maximum entropy를 산정한 결과, 20C3M 배출시나리오에서는 모든 시나리오의 entropy는 3.08, 시나리오 저감방법은 2.75, best 시나리오는 2.28이었으며, 이는 시나리오 저감방법은 모든 시나리오의 89.3%의 불확실성을 설명하고 있으나 best 시나리오는 74.0%밖에 설명하지 못한다는 것을 나타낸다. A & B 배출시나리오에서도 시나리오 저감 방법을 사용한 GCM 시나리오가 best 시나리오보다 모든 시나리오의 불확실성을 더 잘 설명하는 것으로 나타났다. 이와 같이 수많은 GCM 시나리오를 사용하는 것보다 몇 개의 대표 시나리오를 이용하여 기후 변화 불확실성을 유지하면서 미래전망을 할 수 있다면, 매우 효율적으로 기후변화 연구를 수행할 수 있을 것으로 사료된다.

  • PDF

강수량예측에서 편이보정방법과 GCM 선택에 대한 불확실성 비교 (Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections)

  • 송영훈;정은성
    • 한국수자원학회논문집
    • /
    • 제53권4호
    • /
    • pp.249-258
    • /
    • 2020
  • 많은 기후 연구에서는 General Circulation Model (GCM)을 사용하여 연구를 수행하고 있는데, 현재는 5th Assessment Report (AR5)를 기반으로 한 60개 이상의 GCM이 생성되어 있다. 다양한 GCM을 사용하여 기후 연구를 수행하는 데 있어서 여러 종류의 불확실성이 존재한다. 현재 GCM에 의해 발생되는 불확실성을 줄이기 위해 다양한 연구들이 수행되고 있는데, 그 중에서 GCM의 모의값과 관측값의 차이를 줄이기 위해 사용되는 통계학적 편이보정방법이 적용되는 과정에서 발생하는 불확실성도 중요한 요인으로 분류되고 있다. 따라서 본 연구에서는 과거기간(1970년-2005년)의 지점별로 9개의 GCM과 9개의 분위사상법을 사용하여 산정된 결과를 토대로 RCP 4.5를 사용하여 전망기간(2011-2100년)의 월 강수량을 산정하였다. 산정된 강수량을 토대로 표준 편차와 1분위와 3분위의 변위값(inter-quartile range, IQR)을 산정하여 GCM과 편이보정방법으로 기준을 나누어 변동성을 정량화하여 불확실성을 비교하였다. 분석 결과로 표준편차와 IQR은 전망 기간이 뒤로 갈수록 GCM을 기준으로 계산된 결과가 점차 크게 산정되었다. 이를 통해 GCM의 선정과 편이보정 방법 선택이 미래 기후예측에 어느 정도 영향을 미치는지 확인하였다.

국내 농업기후지대 별 최적기후모형 선정을 통한 미래 벼 도열병 발생 위험도 예측 (Predicting Potential Epidemics of Rice Leaf Blast Disease Using Climate Scenarios from the Best Global Climate Model Selected for Individual Agro-Climatic Zones in Korea)

  • 이성규;김광형
    • 한국기후변화학회지
    • /
    • 제9권2호
    • /
    • pp.133-142
    • /
    • 2018
  • Climate change will affect not only the crop productivity but also the pattern of rice disease epidemics in Korea. Impact assessments for the climate change are conducted using various climate change scenarios from many global climate models (GCM), such as a scenario from a best GCM or scenarios from multiple GCMs, or a combination of both. Here, we evaluated the feasibility of using a climate change scenario from the best GCM for the impact assessment on the potential epidemics of a rice leaf blast disease in Korea, in comparison to a multi?model ensemble (MME) scenario from multiple GCMs. For this, this study involves analyses of disease simulation using an epidemiological model, EPIRICE?LB, which was validated for Korean rice paddy fields. We then assessed likely changes in disease epidemics using the best GCM selected for individual agro?climatic zones and MME scenarios constructed by running 11 GCMs. As a result, the simulated incidence of leaf blast epidemics gradually decreased over the future periods both from the best GCM and MME. The results from this study emphasized that the best GCM selection approach resulted in comparable performance to the MME approach for the climate change impact assessment on rice leaf blast epidemic in Korea.

Uncertainty assessment caused by GCMs selection on hydrologic studies

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.151-151
    • /
    • 2018
  • The present study is aimed to quantifying the uncertainty in the general circulation model (GCM) selection and its impacts on hydrology studies in the basins. For this reason, 13 GCMs was selected among the 26 GCM models of the Fifth Assessment Report (AR5) scenarios. Then, the climate data and hydrologic data with two Representative Concentration Pathways (RCPs) of the best model (INMCM4) and worst model (HadGEM2-AO) were compared to understand the uncertainty associated with GCM models. In order to project the runoff, the Precipitation-Runoff Modelling System (PRMS) was driven to simulate daily river discharge by using daily precipitation, maximum and minimum temperature as inputs of this model. For simulating the discharge, the model has been calibrated and validated for daily data. Root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were applied as evaluation criteria. Then parameters of the model were applied for the periods 2011-2040, and 2070-2099 to project the future discharge the five large basins of South Korea. Then, uncertainty caused by projected temperature, precipitation and runoff changes were compared in seasonal and annual time scale for two future periods and RCPs compared to the reference period (1976-2005). The findings of this study indicated that more caution will be needed for selecting the GCMs and using the results of the climate change analysis.

  • PDF

성능지표 기반 대표 GCM 선정 (Selection of Representative GCM Based on Performance Indices)

  • 송영훈;정은성;망응자로이
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.101-101
    • /
    • 2019
  • 전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.

  • PDF

GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가 (Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique)

  • 김철겸;박지훈;조재필
    • 한국기후변화학회지
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

사용자 중심의 GCM 및 상세화 기법 선정에 따른 충주댐 유입량 기후변화 영향 평가 (Evaluation of impact of climate change on inflow to Chungju Dam by user-centered selection of GCM and downscaling method)

  • 조재필;김철겸;박지훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.25-25
    • /
    • 2018
  • 본 연구는 충주댐을 대상으로 기후변화에 따른 미래 댐운영에 미치는 영향을 평가하기 위하여 연구 목적에 접합한 GCM 및 상세화 기법 선정을 위한 절차를 적용함으로써 사용자 중심의 기후변화 시나리오 상세화 자료가 유입량의 재현성 평가에 미치는 영향을 분석하였다. 우선 편이보정 전의 29개 원시 GCM에 대한 강수량 및 기온의 순단위 시 공간적 재현성 평가를 통해서 상위 16개 GCM을 선정하였다. 이후 상세화 기법을 선정하기 위해서 유입량 전망에 중요하다고 판단되는 총강수량(prcptot) 및 일최대강수량 (rx1day)을 기후지수(Climate Indices)로 선정하였다. 상세화 기법은 과거기간의 재현성이 평가, 미래기간 시그널 왜곡도 평가, 공간상관성에 대한 재현성 평가를 통해 SQM 기법을 선정하였다. 제한적인 기후변화 전망 자료를 고려하여 과거 30년 기간에 대한 모의결과 월단위 모형효율지수(ME) 및 결정계수 ($R^2$)는 모두 0.92로 만족할 만한 결과를 보여 주었다. GCM 선정에 따른 오차는 원시 GCM을 통해 선정된 16개 GCM을 사용한 경우 유입량 재현성 평가에 있어 가장 좋은 결과를 보였다. 전체적으로 상세화 자료를 유역 모델링에 활용하는 경우 GCM의 선정보다는 상세화 기법의 선정이 전체적인 재현성 평가에 있어서 중요한 것으로 나타났다. 미래기간에 대한 평균 유입량 전망은 모든 RCP 시나리오에서 근 미래 보다는 중간 및 먼 미래 기간 동안에 유입량이 증가하는 경향을 보였다. 또한 모든 미래 기간에 대해여 RCP 8.5 시나리오가 RCP 4.5 시나리오와 비교하여 유입량의 증가가 높을 것으로 전망되었다. 홍수 관리측면에서 중요한 일 최대 유입량의 미래 변동은 평균 유입량과 비교하여 최대 두 배 이상의 높은 변화율을 보였다. 댐운영 측면에서는 연간 총 유입량의 변화보다 시기별 유입량의 변동 특성을 이해하는 것이 중요하며, 평균 유입량 및 일단위 최대 유입량 모두 근 미래 기간에 대해서는 RCP 시나리오 모두 7월 및 8월을 중심으로 유입량이 증가하는 경향을 보였다. 반면 중간 미래에서 먼 미래로 갈수록 평균 및 일단위 최대 유입량 모두 전체 기간에 걸쳐 증가하는 경향을 보였다.

  • PDF

기후변화 표준 시나리오 선정에 관한 연구 (A Study on Selection of Standard Scenarios in Korea for Climate Change)

  • 이재경;김영오
    • 한국기후변화학회지
    • /
    • 제1권1호
    • /
    • pp.59-73
    • /
    • 2010
  • 현재 미래 기후변화에 따른 수자원을 전망하고, 이에 대한 적응 전략을 수립하는 연구의 가장 중요한 핵심은 바로 '불확실성'이다. 이 때문에 각 연구마다 상이한 결과를 나타내고 있으나, 이러한 불확실성을 줄이는 연구는 국내에서는 매우 미진한 상태이다. 이러한 불확실성의 근본 원인은 배출 시나리오, GCM(General Circulation Model), 상세화 기법, 강우-유출 모형 등을 각 연구마다 다르게 사용했기 때문이다. 본 연구에서는 IPCC 기후 시나리오 중 A, B 배출 시나리오를 바탕으로 생산되는 51개의 GCM 시나리오를 다운로드 받아 2001년부터 2008년까지 월평균 온도와 강수량에 대하여 한반도를 대상으로 분석하였다. 비교 결과, 온도 전망은 실측과 비슷한 경향성을 보였으나, 강수량은 홍수기를 모의하지 못하는 것으로 나타났다. 한반도에 적합한 GCM 시나리오를 선정하기 위해 효율성 계수, PDF, Relative Entropy를 이용한 방법을 적용하였다. 세 방법으로 선정된 시나리오 중 공통된 4개의 GCM 시나리오, 즉 CGCM2.3.2(MRI-M, B1), MIROC3.2medress(NIES, B1), CGCM2.3.2(MRI-M, A2), CGCM2.3.2(MRI-M, A1B)를 최종 선정하였다. 2040년 강수 전망에 있어서도 GCM 시나리오마다 최대 27.36%부터 최소 12.49%까지 서로 다른 증가 전망을 나타냈다. 선택된 GCM 시나리오는 한반도 지역이 대상이나 이수기의 모의결과에서 이질성(heterogeneity)을 나타내고 있어, 본 연구의 결과로 하나의 GCM 시나리오만으로 미래 기후를 전망한다는 것이 얼마나 위험한지 알 수 있다. 따라서 본 연구에서 정량적으로 제시된 GCM 시나리오들이 미래 한반도 이수기 물 공급과 가뭄 재해 정책 수립에 우선적으로 활용해야 함을 제시하였다.

최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정 (Selection framework of representative general circulation models using the selected best bias correction method)

  • 송영훈;정은성;성장현
    • 한국수자원학회논문집
    • /
    • 제52권5호
    • /
    • pp.337-347
    • /
    • 2019
  • 본 연구에서는 미래 기후예측을 위하여 활용되는 전지구모형(general circulation model, GCM) 중 우리나라에 적합한 대표 GCM을 선정하는 방법을 제시하였다. 이에 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상 관측소로 지점 규모로 상세화를 하여 관측강수와 비교하였다. GCM과 관측자료 사이의 편이를 보정하기 위하여 6가지 Quantile Mapping 방법과 Random Forest 기법을 사용하였고, 성능 지표를 비교하여 대표 편이보정방법을 선정하였다. 편이보정된 GCM 모의 결과에 대한 성능을 계산하고 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) 방법을 이용하여 가장 우수한 GCM을 선정하였다. 그 결과 편이보정방법을 NPT (Non-Parametric Transformation) 방법 중 EQ (Empirical Quantile) 방법이 선정되었고, TOPSIS 성능 평가 결과, GISS-E2-R이 가장 우수하였다. 그 다음으로 우수한 GCM을 순서대로 제시하면 MIROC5, CSIRO-Mk3-6-0, CCSM4 이었다. 향후 더 많은 GCM 자료를 이용한다면 보다 보편적인 결과를 도출할 수 있을 것으로 기대된다.