• Title/Summary/Keyword: GCI(Grid Convergence Index)

Search Result 3, Processing Time 0.019 seconds

VERIFICATION OF 2D INJECTION FLOWS WITH GCI AND NEAR-WALL GRID LINE SPACINGS (GCI와 벽면격자거리를 고려한 2차원 분사유동의 검증)

  • Won Su-Hee;Jeung In-Seuck;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.287-292
    • /
    • 2005
  • The flowfields generated by gaseous slot injection into a supersonic flow at a Mach number of 3.75 and a Reynolds number of $2.07{\times}10^7$ are simulated numerically. Fine-scale turbulence effects are represented by a two-equation(k-w SST model) closure model which includes $y^+$ effects on the turbulence model. Grid convergence index(GCI) is also considered to provide a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence model in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-w SST model correctly predicts mean surface pressure distribution and upstream separation length. However, it is also observed that the numerical simulation over predicts the pressure spike and penetration height compared with experimental data. All these results are taken within $1\%$ error band of grid convergence.

  • PDF

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

Verification and Validation of the Numerical Simulation of Transverse Injection Jets using Grid Convergence Index (GCI 를 이용한 수직분사제트 수치모사의 검증 및 확인)

  • 원수희;정인석;최정열
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Two-dimensional steady flowfields generated by transverse injection jets into a supersonic mainstream are numerically simulated. Fine-scale turbulence effects are represented by a k-${\omega}$ SST two-equation closure model which includes $y^+$ effects on the turbulence model. Solution convergence is evaluated by using Grid Convergence Index(GCI), a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence models in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-${\omega}$ SST model correctly predicts the mean surface pressure distribution and the upstream separation length for low static pressure ratios. However, the numerical predictions become less consistent with experimental results as the static pressure ratio increases. All these results are taken within 1% error band of grid convergence.