• Title/Summary/Keyword: GC 함량

Search Result 677, Processing Time 0.032 seconds

Characterization of Product Gas and Residues from Arc Cracking of Waste Lubricating Oil (폐윤활유의 아크 열분해 생성물 및 잔류물 특성 연구)

  • 김인태;김정국;송금주;서용칠;김준형
    • Resources Recycling
    • /
    • v.8 no.5
    • /
    • pp.34-43
    • /
    • 1999
  • An elecmc arc cracking reaclor is developed for the productiol~o f ieusuble fuel gas by the thennal destruction of waste oil. The churaclensucs of product gas and ~esiduesf rom arc crachng of wnste lubr~cat~nogil are sludird. Thc product gas is mainly coruposcd of hydrogen 135-4076), acetylene (13-4076), ethylene 13-476) and olher hgdrocnrbons. The contenr of carbon monomde, one or the main product in a conventional low-temperature Lhennal cracking umt, 1s very slnvll in lhis atc cracking expcnmcnt. Total calocctic wlue of product gas shows 11,000-13.000 kcizlkg, which is hiph cnough to use as a ~ L I I I Cga~ s . and the concentralions oC loxic gases arc well below the rcguliltury emission critena The GCIMS analysis of llquld-phase residues shows that the high rnalccular welgllt hydrocilrbons in the waste oil arc cracked into the low malecular weight hydrocarbons snd hydroem,. The dehydrogcnntion is found lo be Lhe main cracking rcacuon due lo the high temperalure ~ ~ ~ d ubcyc edle ctric arc. The average parucle size of soot as the solid-phase residue is 10 3 wm, and the conlents of cabon a ~ hdea vy metals are abovc 60% and under 0.01 ppm, respecttrely. Thc utllizvtion or sool, as industl-id1 rcsource seems lo he reasible aIter refimng.

  • PDF

Production of Phytol, an ACAT Inhibitor, from Callus Culture of Lettuce (Lactuca sativa L.) (상추 (Lactuca sativa L.) callus로부터 ACAT 억제 활성물질, phytol의 생산)

  • An, Kwang-Hee;Jang, Tae-O;Baek, Nam-In;Kim, Se-Young
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • The possibility for mass production of phytol, inhibitory diterpene against ACAT (Acyl-CoA: Cholesterol acyltransferase) was investigated by using callus culture of lettuce. The callus were induced from lettuce cotyledon explants on MS medium containing 0.5 mg.L$^{-1}$ NAA after 4 week's culture. Adventitious roots were formed from the explants on MS medium containing 0.5 mg.L$^{-1}$ IBA or 1.0 mg.L$^{-1}$ NAA. Adventitious shoots and roots were emerged from the callus when the callus was transferred to MS medium containing auxin alone, or with cytokinin. The plant growth regulators and their concentrations for the organogenesis were 1.0 mg.L$^{-1}$ NAA, 0.1 mg.L$^{-1}$ BA, 0.5 mg.L$^{-1}$ NAA with 0.1 mg.L$^{-1}$ kinetin, or 0.5 g.L$^{-1}$ 2.4-D with 1.0 mg.L$^{-1}$ kinetin. Analyses of chlorophyll contents showed that chlorophyll contents were higher in morphogenic calli than in non-morphogenic calli. However, the chemical analyses of gas chromatography indicated that phytol contents were not proportionate to the chlorophyll contents of callus. The content of phytol was higher in callus than in lettuce cotyledon.ledon.

Determination of the Effect of Trimethylamine Reduction in Egg Yolk Following Supplementation of Laying-Hen Feed with Riboflavin

  • Park, Geon Woo;Park, Kyung Ho;Kim, Sang Gu;Lee, Sang Yun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.207-215
    • /
    • 2022
  • The intensity of fishy odor in eggs, which differs depending on the poultry type and individual perception, can be due to many factors including trimethylamine (TMA) which has been identified as the main. Notably, riboflavin can increase the activity of flavin-containing monooxygenase 3, the enzyme responsible for converting TMA into odorless trimethylamine-N-oxide. This study aimed to analyze the TMA content in egg yolk, evaluate its contribution to fishy odor, and develop a method to prevent this undesired odor. Solid-phase microextraction-gas chromatography/mass spectrometry was used to detect and quantify volatile compounds in egg yolk from hens fed a standard TMA-rich diet and hens fed a riboflavin-supplemented diet. To compare the relative content of volatile substances between eggs, a correlation study was performed using an electronic nose. Higher concentration of TMA (1.06 ± 0.12 mg/kg) was detected in egg yolks obtained from hens fed a normal diet than those fed a riboflavin-supplemented diet. Overall, this study suggests that riboflavin affects the quantity and quality of volatile substances, including TMA, present in eggs and we expect these findings to improve the quality and reduce the fishy odor of eggs.

Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.) (정향(Eugenia caryophyllata Thunb.) Eugenol 및 그 유도체의 항산화 및 항염증활성)

  • Leem, Hyun-Hee;Kim, Eun-Ok;Seo, Mi-Jae;Choi, Sang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1361-1370
    • /
    • 2011
  • Antioxidant and anti-inflammatory activities of eugenol and its derivatives from clove (Eugenia caryophyllata Thunb.) were evaluated using in vitro assay systems by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, cyclooxygenase-2 (COX-2), and 15-lipoxygenase (15-LOX). Among eight different crude medicinal drugs tested, volatile extracts of clove extracted by steam distillation extraction (SDE) showed potent DPPH radical scavenging activity ($IC_{50}$=8.85 ${\mu}g/mL$) as well as strong inhibitory activity against COX-2 (58.15%) and 15-LOX (86.15%) at 10 ${\mu}g/mL$ and 25 ${\mu}g/mL$, respectively. Major volatile components of clove were identified as eugenol, trans-caryophyllene, and acetyleugenol by GC-MS analysis. Out of three eugenol derivatives, eugenol, methyl eugenol, and acetyl eugenol, eugenol showed the strongest DPPH radical scavenging activity and COX-2 inhibitory activity, whereas methyl eugenol exhibited the strongest 15-LOX inhibitory activity. Finally, the contents of the three eugenol derivatives in clove were quantified by analytical HPLC. Contents of eugenol and acetyl eugenol in clove were 6.95% and 1.85% per dry weight, respectively. These results suggest that eugenol and its derivatives in steam distilled extract of clove may be useful as potential antioxidant and anti-inflammatory agents.

Detection of Hydrocarbons Induced by Electron Beam Irradiation of Almond (Prunus amygosalus L.) and Peanut (Arachis hypogaea) (전자선 조사한 아몬드(Prunus amygosalus L.)와 땅콩(Arachis hypogaea)에서 유래한 지방분해산물 분석)

  • Jeong, In Seon;Kim, Jae Sung;Hwang, In Min;Choi, Sung Hwa;Choi, Ji Yeon;Nho, Eun Yeong;Khan, Naeem;Kim, Byung Sook;Kim, Kyong Su
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2013
  • Food irradiation has recently become one of the most successful techniques to preserve food with increased shelf life. This study aims to analyze hydrocarbons in almonds (Prunus amygosalus L.) and peanuts (Arachis hypogaea) induced by electron beam irradiation. The samples were irradiated at 0, 1, 3, 5 and 10 kGy by e-beam and using florisil column chromatography fat, and content was extracted. The induced hydrocarbons were identified using gas chromatography-mass spectrometry (GC/MS). The major hydrocarbons in both irradiated samples were 1,7-hexadecadiene ($C_{16:2}$) and 8-heptadecene ($C_{17:1}$) from oleic acid, 1,7,10-hexadecatriene ($C_{16:3}$) and 6,9-heptadecadiene ($C_{17:2}$) from linoleic acid and 1-tetradecene ($C_{14:1}$) and pentadecane ($C_{15:0}$) from palmitic acid. Concentrations of the hydrocarbons produced by e-beam were found to be depended upon the composition of fatty acid in both almonds and peanuts. The $C_{n-2}$ compound was found to be higher than $C_{n-1}$ compound in oleic acid and palmitic acid, while in case of linoleic acid, $C_{n-1}$compound was higher than $C_{n-2}$ compound. The radiation induced hydrocarbons were detected only in irradiated samples, with 1 kGy or above, and not in the non-irradiated ones. The production of 1,7-hexadecadiene ($C_{16:2}$), 8-heptadecene ($C_{17:1}$), 1,7,10-hexadecatriene ($C_{16:3}$) and 6,9-heptadecadiene ($C_{17:2}$), in high concentration gave enough information to suggest that these may be the possible marker compounds of electron beam irradiation in almonds and peanuts.

Analysis of Physicochemical Characterization and Volatiles in Pure or Refined Olive Oils (국내 유통되는 퓨어 및 정제 올리브유의 이화학적 특성 및 향기 분석)

  • Nam, Ha-Young;Lee, Ju-Woon;Hong, Jang-Hwan;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1409-1416
    • /
    • 2007
  • Seven selected commercial pure or refined olive oils were obtained from the market, and their physicochemical properties and volatile characterizations were investigated. Fatty acid profiles of the analyzed olive oils showed oleic $(61.2{\sim}74.7mole%)$, palmitic $(10.2{\sim}16.8mole%)$, linoleic $(9.4{\sim}18.0mole%)$, stearic $(1.9{\sim}3.0mole%)$, palmitoleic $(0.7{\sim}2.4mole%)$ and linolenic acid $(0.5{\sim}0.9mole%)$. According to Hunter#s color measurement, pure or refined olive oils showed $L^*$ value of $92.2{\sim}99.0$, $a^*$ value of $-22.2{\sim}-3.2$, and $b^*$ value of $18.5{\sim}55.0$. Their total phenol contents ranged from 1.9 to $13.3mg/100g$ while ${\alpha}-tocopherol$ content showed $7.91{\sim}13.88mg/100g$. Oxidation stability of the pure or refined olive oils were observed by Rancimat. The induction period ranged from 17.37 to 34.72 hr while their POV were $6.83{\sim}20.31meq/kg$ oil. Electronic nose and gas chromatograph-mass spectrometry with head-space solid phase microextraction were applied to identify and discriminate the volatile compounds and flavors in pure or refined olive oils, respectively.

Analysis of the Component and Immunological Efficacy of Chamaecyparis obtusa Leaf Extract (편백나무 잎 추출물의 성분분석과 면역효능에 관한 연구)

  • Kim, Joung Hee;Lee, Syng-Ook;Do, Kook Bae;Ji, Won Dae;Kim, Sun Gun;Back, Young Doo;Kim, Keuk-Jun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • Chamaecyparis obtusa (CO) has recently been attracting attention because of its beneficial effects on skin allergies, atopic dermatitis, and skin diseases, such as acne and eczema. In the present study, the extract from CO leaf grown in Jangseong gun, Jeollanam-do, Korea was evaluated for its anti-oxidant, anti-inflammatory, and anti-allergic effects in vitro. The total polyphenol content of the CO leaf extract was $25.89{\pm}0.31mg$ gallic acid equivalents (GAE)/g. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed the presence of six compounds in the CO leaf extract: ${\alpha}-terpinene$ (3.03 mg/g), ${\alpha}-terpineol$ (9.48 mg/g), limonene (5.96 mg/g), borneol (59.78 mg/g), myrcene (4.85 mg/g), and sabinene (11.31 mg/g). The $RC_{50}$ values of the CO leaf extract for $H_2O_2$ and ABTS radical were $5.47{\pm}0.13mg/mL$ and $4.00{\pm}0.01mg/mL$, respectively. In addition, the CO leaf extract showed significant inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells and IgE-induced release of ${\beta}-hexosaminidase$ (degranulation) in mast-cell like RBL-2H3 cells. The cell viability assay showed that the CO leaf extract ($100{\sim}800{\mu}g/mL$) did not affect the viability of human normal skin fibroblast CCD-986sk cells significantly. Overall, these results suggest that the CO leaf extract is a potential functional cosmetic ingredient that can exert anti-oxidant, anti-inflammatory, and anti-allergic effects.

Isolation of Myrosinase and Glutathione S-transferase Genes and Transformation of These Genes to Develop Phenylethylisothiocyanate Enriching Chinese Cabbage (배추에서 항암물질 phenylethylisothiocyanate의 다량 합성을 위한 myrosinase와 glutathione S-transferase 유전자 분리 및 이를 이용한 형질전환체 육성)

  • Park, Ji-Hyun;Lee, Su-Jin;Kim, Bo-Ryung;Woo, Eun-Teak;Lee, Ji-Sun;Han, Eun-Hyang;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.623-632
    • /
    • 2011
  • To increase the anti-carcinogens phenylethylisothiocyanate (PEITC), myrosinase (MYR), and glutathione S-transferase (GST), genes related to PEITC pathway were isolated and the gene expressions were regulated by Agrobacterium transformation. Isolated cDNAs, MYR, and GST genes were 1,647 bp and 624 bp, respectively, and the protein expression was confirmed through pET system. Thereafter, we constructed a sense-oriented over-expressing myrosinase (pBMY) and RNAi down-regulated GST (pJJGST) binary vectors for the Chinese cabbage transformation. After the transformation, thirteen over-expressing transgenic Chinese cabbage plants (IMS) with pBMY and five down-regulated ones (IGA) with pJJGST were selected by PCR analysis. Selected $T_0$ transgenic plants were generated to $T_1$ plants by self-pollination. Based on the Southern blot analysis on these $T_1$ transgenic plants, 1-4 copies of T-DNA were transferred to Chinese cabbage genome. Thereafter, RNA expression level of myrosinase gene or GST gene was analyzed through real-time RT PCR of IMS, IGA, and non-transgenic inbred lines. In case of IMS lines, myrosinase gene was increased 1.03-4.25 fold and, in IGA lines, GST gene was decreased by 26.42-42.22 fold compared to non-transgenic ones, respectively. Analysis of PEITC concentrations using GC-MS it showed that some IMS lines and some IGA lines increased concentrations of PEITC up to 4.86 fold and up to 3.89 fold respectively compared to wild type. Finally in this study IMS 1, 3, 5, 12, and 15 and IGA 1, 2, and 4 were selected as developed transgenic lines with increasing quantities of anti-carcinogen PEITC.

Emission characteristics of volatile organic compounds released from spray products (생활 스프레이 제품의 안전성 조사: 벤젠과 톨루엔 함량을 중심으로)

  • Jo, Hyo-Jae;Kim, Bo-Won;Kim, Yong-Hyun;Lee, Min-Hee;Jo, Sang-Hee;Kim, Ki-Hyun;Kim, Joon-Young;Park, Jun-Ho;Oh, Soo-Min;Lee, Seung-Hwan;Kim, Dong-Yeon
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Many kinds of liquid spray products are used in livelihood activities these days. Spray products can be distinguished by the target to be sprayed (like into the air or on human skin (body)). Because human can be exposed to volatile organic compounds (VOC) emitted from spray products, some considerations on safety or hazard of spray products should be needed. In this study, emission characteristics of VOCs were investigated against 10 types of liquid spray products (6 skin spray and 4 air spray products). The concentrations of benzene and toluene were determined by gas chromatography/mass spectrometry (GC/MS) equipped with a thermal desorber (TD). Their average concentrations from 6 skin spray products exhibited$ 5.64{\pm}1.95$ ($mean{\pm}S.D$) and $8.52{\pm}2.89$ ppb(w), respectively. In contrast, those of 4 air spray samples had $7.30{\pm}1.31$ and $7.19{\pm}1.78$ ppb(w), respectively. If liquid contents in spray samples are completely vaporized in one cubic meter (1 m3) after spraying for 10 seconds, their mean concentrations of skin spray products are $31.7{\pm}8.80$ (benzene) and $50.5{\pm}17.1{\mu}g/Sm^3$ (toluene). In contrast, those of air spray products are $24.0{\pm}4.30$ (benzene) and $23.6{\pm}5.83{\mu}g/Sm^3$ (toluene). The estimated concentration levels of benzene from two types of products (31.7 and $24.0{\mu}/Sm^3$) exceeded the Korean atmospheric environmental guideline ($5{\mu}g/Sm^3$). The results of this study thus suggest that some measures should be made to reduce or suppress the contents of VOC in spray products.

Differences of Essential Oil Content in Valeriana fauriei var. dasycarpa Hara, V. officinalis var lalfolia Miq and V. wallichii DC (광릉쥐오줌풀, 넓은잎쥐오줌풀, 네팔산쥐오줌풀의 정유성분(精油成分)차이)

  • Choi, Young-Hyun;Kim, Young-Hoi;Lee, Jong-Chul;Cho, Chang-Hwan;Kim, Choong-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.3
    • /
    • pp.217-225
    • /
    • 1995
  • In this study the essential oil and pharmacologically active components of different valerian species (Valeriana fauriei var. dasycarpa Hara and V. officinalis L. from Korea and V. wallichii DC from Nepal) were analyzed to search for native plant resources that can be used for medicinal herb and tobacco flavoring. The oil contents in dry roots of V. fauriei, V. officinalis and V. walhchii were 1. 71%, 0. 82% and 0. 83 %, respectively. The composition of the essential oil among different valerian species was compared. In V. fauriei 47 compounds were identified, while 21 and 25 compounds were identified in V. officinalis and V. wallichii. The major compounds in the oil of V. fauriei were bornyl acetate (33.8%) and camphene (10.8%), cedrol (4. 1 %), -pinene (3. 2%) and unidentified sesquiterpene alcohol (3. 0%). The major compounds were borneol (62. 5%) and ${\beta}-sesquiphelandrene$(6. 8%) and spathulenol (2. 1%) in V. officinalis, and borneol (74. 3%) and ${\alpha}-elemene$ (2.7%) and -sesquiphellandrene (2. 3%) in V. wallichii. Among the components known as major pharmacologically active compounds in European or Japanese valerian roots, valeranone, valerenal and -kessyl acetate was detected in a small amount in V. fauriei, but kessoglycol diacetate was not detected in V. faudei and V. officinalis Among the valepotrate compounds, major pharmacologically active components in V. wallichii, valtrate was detected in a small amount in V. fauriei and V. officinalis., and detected 1. 42% in V. wallichii. Didrovaltrate was also detected in the three valerian species tested, but acevaltrate was not detected except V. wallichii. On the other hand, antioxidative activity was slightly higher in V. fauriei than those of V. officinalis.

  • PDF