Browse > Article
http://dx.doi.org/10.13103/JFHS.2022.37.4.207

Determination of the Effect of Trimethylamine Reduction in Egg Yolk Following Supplementation of Laying-Hen Feed with Riboflavin  

Park, Geon Woo (Food Safety Center, Food Safety division, Pulmuone Co. Ltd.)
Park, Kyung Ho (Food Safety Center, Food Safety division, Pulmuone Co. Ltd.)
Kim, Sang Gu (Food Safety Center, Food Safety division, Pulmuone Co. Ltd.)
Lee, Sang Yun (Food Safety Center, Food Safety division, Pulmuone Co. Ltd.)
Publication Information
Journal of Food Hygiene and Safety / v.37, no.4, 2022 , pp. 207-215 More about this Journal
Abstract
The intensity of fishy odor in eggs, which differs depending on the poultry type and individual perception, can be due to many factors including trimethylamine (TMA) which has been identified as the main. Notably, riboflavin can increase the activity of flavin-containing monooxygenase 3, the enzyme responsible for converting TMA into odorless trimethylamine-N-oxide. This study aimed to analyze the TMA content in egg yolk, evaluate its contribution to fishy odor, and develop a method to prevent this undesired odor. Solid-phase microextraction-gas chromatography/mass spectrometry was used to detect and quantify volatile compounds in egg yolk from hens fed a standard TMA-rich diet and hens fed a riboflavin-supplemented diet. To compare the relative content of volatile substances between eggs, a correlation study was performed using an electronic nose. Higher concentration of TMA (1.06 ± 0.12 mg/kg) was detected in egg yolks obtained from hens fed a normal diet than those fed a riboflavin-supplemented diet. Overall, this study suggests that riboflavin affects the quantity and quality of volatile substances, including TMA, present in eggs and we expect these findings to improve the quality and reduce the fishy odor of eggs.
Keywords
Egg yolk; Poultry; Riboflavin; SPME-GC/MS; Trimethylamine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Honkatukia, M., Reese, K., Preisinger, R., Tuiskula-Haavist, M., Weigend, S., Roito, J., Maki-Tanila, A., Vilkki, J., Fishy taint in chicken eggs is associated with a substitution within a conserved motif of the FMO3 gene. Genomics, 86, 225-232 (2005). doi: 10.1016/j.ygeno.2005.04.005.   DOI
2 Goh, Y.K., Mueller, M.M., Clandinin, D.R., Robblee, A.R., The effects of choline and sinapine bisulfate in a laying ration on the incidence of fishy odor in eggs from brown-shelled egg layers. Can. J. Anim. Sci., 59, 545-549 (1979). doi: 10.4141/cjas79-068   DOI
3 Fenwick, G.R., Pearson, A.W., Butler, E.J., 1981. Trimethyl-amine taint in eggs. In: Beuving, G., Scheele, C.W., Simons, P.C.M. (Eds.) Proceedings of the First European Symposium on Quality of Eggs. Spelderholt Institute for Poultry Research, Beekbergen, the Netherlands, pp. 144-152.
4 Goh, Y.K., Robblee, A.R., Clandinin, D.R., Influence of glucosinolates and free oxazolidinethione in a laying hen diet containing a constant amount of sinapine on the trimethyl-amine content and fishy odor of eggs from brown-shelled egg layers. Can. J. Anim. Sci., 63, 671-676 (1983). doi: 10.4141/cjas83-075   DOI
5 Messenger, J., Clark, S., Massick, S., Bechtel, M., A review of trimethylaminuria: (Fish odor syndrome). J. Clin. Aesthet. Dermatol., 6, 45-48 (2013).
6 Bouchemal, N., Ouss, L., Brassier, A., Barbier, V., Gobin, S., Hubert, L., de Lonlay, P., Le Moyec, L., Diagnosis and phenotypic assessment of trimethylaminuria, and its treatment with riboflavin: 1H NMR spectroscopy and genetic testing. Orphanet J. Rare Dis., 14, 222 (2019). doi: 10.1186/s13023-019-1174-6   DOI
7 Pearson, A.W., Butler, E.J., Curtis, R.F., Fenwick, G.R., Hobson-Frohock, A., Land, D.G., Effect of rapeseed meal on trimethylamine metabolism in domestic fowl in relation to egg taint. J. Sci. Food Agric., 30, 799-804 (1979). doi:10.1002/jsfa.2740300809   DOI
8 Vondell, J.H., Detection of chickens laying "fishy eggs". Poult. Sci., 27, 244-245 (1948). doi: 10.3382/ps.0270244   DOI
9 USDA (U.S. Department of Agriculture), (2019, January 4). Egg, quail, whole, fresh, raw [SR Legacy, FoodData Central ID: 172191]. Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/172191/nutrients.
10 Ward, Y.K., Classen, H.L., Buchanan F.C., Fishy-egg tainting is recessively inherited when brown-shelled layers are fed canola meal. Poult. Sci., 88, 714-721 (2009). doi:10.3382/ps.2008-00430   DOI
11 Hobson-Frohock, A., Land, D.G., Griffiths, N.M., Curtis, R.F., Egg taints: association with trimethylamine. Nature, 243, 304-305 (1973). doi: 10.1038/243304a0   DOI
12 Bir, D., Tutin, K., Quantitation of Trimethyl amine by head-space gas chromatography-mass spectrometry using a base-modified column. J. Chromatogr. Sci., 40, 337-342 (2002). doi: 10.1093/chromsci/40.6.337   DOI
13 Dehaut, A., Duthen, S., Grard, T., Krzewinski, F., N'Guessan, A., Brisabois, A., Duflos, G., Development of an SPME-GC-MS method for the specific quantification of dimethyl-amine and trimethylamine: use of a new ratio for the freshness monitoring of cod fillets. J. Sci. Food Agric., 96, 3787-3794 (2016). doi: 10.1002/jsfa.7570   DOI
14 Igwe, I.R., Okonkwo, C.J., Uzoukwu, U.G., Onyenegecha, C.O., The effect of choline chloride on the performance of broiler chickens. Annu. Res. Rev. Biol., 8, 1-8 (2015). doi: 10.9734/ARRB/2015/19372   DOI
15 Ampuero, S., Zesiger, T., Gustafsson, V., Lunden, A., Bosset, J., Determination of trimethylamine in milk using an MS-based electronic nose. Eur. Food Res. Technol., 214, 163-167 (2002). doi: 10.1007/s00217-001-0463-0   DOI
16 Jo, S.H., Kim, K.H., Kim, Y.H., Lee, M.H., Ahn, J.H., Szulejko, J.E., Sohn, J.R., Ryu, C.E.Y., Kim, A.Y.H., Study of odor from boiled eggs over time using gas chromatography. Microchem. J., 110, 517-529 (2013). doi: 10.1016/j.microc.2013.05.011   DOI
17 Manning, N.J., Allen, E.K., Kirk, R.J., Sharrard, M.J., Smith, E.J., 2012. Riboflavin-responsive trimethylaminuria in a patient with homocystinuria on betaine therapy. In: JIMD Reports-Case and Research Reports, 2012/2. Springer, Heidelberg, Germany, pp. 71-75. doi: 10.1007/8904_2011_99   DOI
18 Wilson, D.M., Dunman, K., Roppel, T., Kalim, R., Rank extraction in tin-oxide sensor arrays. Sens. Actuators B Chem., 62, 199-210 (2000). doi: 10.1016/S0925-4005(99)00386-X   DOI
19 Sliwinska, M., isniewska, P., Dymerski, T., Namiesnik, J., Wardencki, W., Food analysis using artificial senses. J. Agric. Food Chem., 62, 1423-1448 (2014). doi: 10.1021/jf403215y   DOI
20 Mazerski, J., 2000. [Classification], In: [Fundamentals of Chemometry], Wydaw. Politechniki Gdanskiej, Gdansk, Poland, pp. 251-259. [in Polish]
21 Hubbard, M.R., 2012. Control charts. In: Statistical Quality Control for the Food Industry, third ed. Springer Science & Business Media, Berlin, Germany, pp. 49-70.
22 FAOSTAT (Food and Agriculture Organization of the United Nations), (2021). Retrieved from http://www.fao.org/faostat/en/?#search/egg.
23 Merkisz, J., Barczak, A., Pielecha, J., [Analyzing pollutant emissions variability using PCA method]. Logistyka, 3, 1835-1844 (2011). [in Polish]