• Title/Summary/Keyword: GARCH-X

Search Result 2, Processing Time 0.017 seconds

Some limiting properties for GARCH(p, q)-X processes

  • Lee, Oesook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.697-707
    • /
    • 2017
  • In this paper, we propose a modified GARCH(p, q)-X model which is obtained by adding the exogenous variables to the modified GARCH(p, q) process. Some limiting properties are shown under various stationary and nonstationary exogenous processes which are generated by another process independent of the noise process. The proposed model extends the GARCH(1, 1)-X model studied by Han (2015) to various GARCH(p, q)-type models such as GJR GARCH, asymptotic power GARCH and VGARCH combined with exogenous process. In comparison with GARCH(1, 1)-X, we expect that many stylized facts including long memory property of the financial time series can be explained effectively by modified GARCH(p, q) model combined with proper additional covariate.

GARCH-X(1, 1) model allowing a non-linear function of the variance to follow an AR(1) process

  • Didit B Nugroho;Bernadus AA Wicaksono;Lennox Larwuy
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • GARCH-X(1, 1) model specifies that conditional variance follows an AR(1) process and includes a past exogenous variable. This study proposes a new class from that model by allowing a more general (non-linear) variance function to follow an AR(1) process. The functions applied to the variance equation include exponential, Tukey's ladder, and Yeo-Johnson transformations. In the framework of normal and student-t distributions for return errors, the empirical analysis focuses on two stock indices data in developed countries (FTSE100 and SP500) over the daily period from January 2000 to December 2020. This study uses 10-minute realized volatility as the exogenous component. The parameters of considered models are estimated using the adaptive random walk metropolis method in the Monte Carlo Markov chain algorithm and implemented in the Matlab program. The 95% highest posterior density intervals show that the three transformations are significant for the GARCHX(1, 1) model. In general, based on the Akaike information criterion, the GARCH-X(1, 1) model that has return errors with student-t distribution and variance transformed by Tukey's ladder function provides the best data fit. In forecasting value-at-risk with the 95% confidence level, the Christoffersen's independence test suggest that non-linear models is the most suitable for modeling return data, especially model with the Tukey's ladder transformation.