• Title/Summary/Keyword: GAP43

Search Result 445, Processing Time 0.023 seconds

Effects of Repeated Citalopram Treatments on Chronic Mild Stress-Induced Growth Associated Protein-43 mRNA Expression in Rat Hippocampus

  • Park, Sang-Ha;Choi, Song-Hyen;Lee, Ji-Min;Kang, Seung-Woo;Shin, You-Chan;Kim, Hyun-Ju;Kim, Hyun-Jung;Shin, Seung-Keon;Lee, Min-Soo;Shin, Kyung-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.117-123
    • /
    • 2008
  • Although growth associated protein-43 (GAP-43) is known to playa significant role in the regulation of axonal growth and the formation of new neuronal connections in the hippocampus, there is only a few studies on the effects of acute stress on GAP-43 mRNA expression in the hippocampus. Moreover, the effects of repeated citalopram treatment on chronic mild stress (CMS)-induced changes in GAP-43 mRNA expression in the hippocampus have not been explored before. To explore this question, male rats were exposed to acute immobilization stress or CMS. Also, citalopram was given prior to stress everyday during CMS procedures. Acute immobilization stress significantly increased GAP-43 mRNA expression in all subfields of the hippocampus, while CMS significantly decreased GAP-43 mRNA expression in the dentate granule cell layer (GCL). Repeated citalopram treatment decreased GAP-43 mRNA expression in the GCL compared with unstressed controls, but this decrease was not further potentiated by CMS exposure. Similar decreases in GAP-43 mRNA expression were observed in CA1, CA3 and CA4 areas of the hippocampus only after repeated citalopram treatment in CMS-exposed rats. This result indicates that GAP-43 mRNA expression in the hippocampus may differently respond to acute and chronic stress, and that repeated citalopram treatment does not change CMS-induced decreases in GAP-43 mRNA expression in the GCL.

The Effects of Pulsed Electromagnetic Field on Functional Recovery and Expression of GAP-43 after Incomplete Spinal Cord Injury in Rats (맥동전자장이 불완전 척수손상 흰쥐의 기능회복과 GAP-43의 발현에 미치는 영향)

  • Bang, Hyun-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.3
    • /
    • pp.349-356
    • /
    • 2012
  • Purpose : This study was designed to investigate the effects of pulsed electromagnetic field on functional recovery and expression of GAP-43 after incomplete spinal cord injury (SCI) in rats. Methods : To confirm the damage of SCI and effects of pulsed electromagnetic field, 20 Sprague-Dawley male rats were used and divided randomly 2groups (SCI, PEMF). Incomplete SCI was induced by using modified NYU drop model. After operation, functional recovery test, immunohistochemistry and western blot analysis were measured at 1, 2, 3 weeks. Pulsed electromagnetic field were apply three weeks (one times a day, five days a week and twenty minutes a session). Results : In the this study, applications of pulsed electromagnetic field after incomplete SCI induced the significant improvement in functional recovery and expression of neurotrophic factor. The results were as follows; Foot print test, PEMF were significantly decreased than the SCI (p<.05). Expression of GAP-43, PEMF were significantly increased than the SCI at 2 and 3 weeks (p<.05). Conclusion : In conclusion, pulsed electromagnetic field were positive effect in functional recovery and expression of GAP-43 after incomplete SCI in rats.

Ginseng Saponin as an Antagonist for Gap Junctional Channels

  • Rhee, Seung-Keun
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Gap junctional channels, allowing rapid intercellular communication and synchronization of coupled cell activities, play crucial roles in many signaling processes, including a variety of cell activities. Consequently, a modulation of the gap junctional intercellular communication (GJIC) should be a potential pharmacological target. In the present, the GJIC of a epithelial-derived rat mammary cells (BICR-M1Rk) was assessed in the presence of ginseng saponin, by using an established method of scrape-loading dye transfer assay. The transfer of Lucifer yellow (diameter: 1.2 nm) among the neighboring BICR-M1Rk cells, in which connexin43 (Cx43) is a major gap junction channel-forming protein, was significantly retarded at a concentration of $10{\mu}g/ml$ ginseng saponin. By using both methods of RT-PCR and Western blotting, it was demonstrated that ginseng saponin modulated neither the mRNA synthesis of Cx43 nor the translational process of Cx43. This ginseng saponin-induced modification of GJIC was a similar phenomenon observed under the $\beta$-glycyrrhetinic acid treatment, a well-known gap junction channel blocker. Taken together, it is reasonable to conclude that the ginseng saponin inhibits GJIC only by modulating the gating property of gap junction channels.

Effects of Exercise on Axonal Regeneration and Growth-associated Protein (GAP­43) Expression Following Sciatic Nerve Injury in Rats (좌골신경 손상 후 운동이 쥐의 축색 재생과 성장관련 단백질(GAP-43) 발현에 미치는 영향)

  • Seo Tae-Beom;Yoon Sung-Jin;Kim Kyung-Tae;Yoon Jae-Suk;Yoon Jin-Hwan;Park Sung-Tae;Han In-Sun;Namgung Uk
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.486-491
    • /
    • 2005
  • Physical activity can improve sensorimotor recovery after peripheral nerve injury. Growth-associated protein 43 (GAP-43) is highly correlated with neuronal development and axonal regeneration and present in large quantities in the axonal growth cone. Using immunofluorescene staining and anterograde and retorgrade techniques, we identified enhanced axonal regrowth in distal stump of the sciatic nerve 3-14 days after crush injury in rats with treadmill training. We also carried out western blot to investigate GAP-43 protein expression in injured sciatic nerve. GAP-43 protein levels were highly induced in the injured sciatic nerve 3, 7 and 14 days compared with sedentary group. Thus, the present data provide a new evidence that treadmill training promoted axonal re-growth after injury and increased GAP-43 protein levels in the regenerating nerve.

Effect of Motor Training on Hippocampus after Diffuse Axonal Injury in the Rats (운동훈련이 미만성 축삭손상을 일으킨 흰쥐의 해마에 미치는 영향)

  • Cheon, Song-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.348-358
    • /
    • 2009
  • Diffuse axonal injury(DAI) is a common form of traumatic brain injury and thought to be a major contributor to cognitive dysfunction. Physical activity has been shown to beneficial effects on physical health and influences in hippocampus which is an important location for memory and learning. The purpose of this study was to investigate the effect of motor training on motor performance and axonal regeneration in hippocampus through the immunoreactivity of GAP-43 after diffuse axonal injury in the rats. The experimental groups were applied motor training(beam-walking, rotarod, and Morris water maze) but control groups were not. The time performing the motor tasks and GAP-43 immunohistochemistry were used for the result of axonal recovery. There were meaningful differences between experimental groups and control groups on motor performance and GAP-43 immunohistochemistry. The control groups showed increasing tendency with the lapse of time, but experimental groups showed higher. Therefore, Motor training after DAI improve motor outcomes which are associated with dynamically altered immunoreactivity of GAP-43 in axonal injury regions, particularly hippocampus, and that is related with axonal regeneration.

Depressed Neuronal Growth Associated Protein (GAP)-43 Expression in the Small Intestines of Mice Experimentally Infected with $Neodiplostomum$ $seoulense$

  • Pyo, Kyoung-Ho;Kang, Eun-Young;Jung, Bong-Kwang;Moon, Jung-Ho;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.89-93
    • /
    • 2012
  • $Neodiplostomum$ $seoulense$ (Digenea: Neodiplostomidae) is an intestinal trematode that can cause severe mucosal pathology in the small intestines of mice and even mortality of the infected mice within 28 days after infection. We observed neuronal growth associated protein-43 (GAP-43) expression in the myenteric plexus of the small intestinal wall of $N.$ $seoulense$-infected mice until day 35 post-infection (PI). BALB/c mice were infected with 200 or 500 $N.$ $seoulense$ metacercariae isolated from naturally infected snakes and were killed every 7 days for immunohistochemical demonstration of GAP-43 in the small intestines. $N.$ $seoulense$-infected mice showed remarkable dilatation of intestinal loops compared with control mice through days 7-28 PI. Conversely, GAP-43 expression in the mucosal myenteric plexus was markedly ($P$<0.05) reduced in the small intestines of $N.$ $seoulense$-infected mice during days 7-28 PI and was slightly normalized at day 35 PI. From this study, it is evident that neuronal damage occurs in the intestinal mucosa of $N.$ $seoulense$-infected mice. However, the correlation between intestinal pathology, including the loop dilatation, and depressed GAP-43 expression remains to be elucidated.

Effects of Aquatic Exercise on Vestibulo-motor and Expression of GAP-43 in Diffuse brain Injury Rats (수중운동이 미만성 뇌손상 백서의 전정-운동 및 GAP-43 발현에 미치는 영향)

  • Yang, Seung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.656-664
    • /
    • 2009
  • The purposes of this study were to examine whether aquatic exercise has influence on the neuroplasticity and vestibulo-motor function in diffuse brain injury rats. 80 Sprague-Dawley rats were assigned to four groups; Group I: control group (n=20), Group II: aquatic exercise (n=20), Group III: treadmill exercise with change of velocity and inclination (n=20), Group IV: simple treadmill exercise (n=20). And we applied exercise each groups for 3 weeks except Group I. Before the rats were sacrificed to identify immunohistochemistry study at each time of measurement day, Rota-Rod test was given to assess changes in vestibulomotor function. then, the immunohistochemistry study of GAP-43 in discrete regions of the rat brain was performed to measure changes in neuroplasticity. The results demonstrate that aquatic exercise group is more effective than other groups. expression of GAP-43 and vestibulo-motor function were increased most in aquatic exercise group. Therefore, this study suggest that aquatic exercise may effective therapeutic approach to increase neuroplasticity and vestibulo-motor function in traumatic brain injury.

The Effect of EA and TENS on GAP-43 Expression in Spinal Cord after Rat Sciatic Nerve Crush Injury (전침자극과 경피신경전기자극이 흰쥐 좌골신경 압좌손상 후 척수내 GAP-43 발현에 미치는 영향)

  • Lee, Hyun-Min;Park, Eun-Se;Kim, Min-Hee;Kim, Souk-Boum;Kim, Dong-Hyun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • Purpose: The purpose of this study was to identify the effect of electroacupuncture(EA) and transcutaneous electric nerve stimulation(TENS) after sciatic nerve crush injury in rats. Methods: The EA for experimental group I (Exp I, n=15) and TENS for experimental group II (Exp II, n=15) was applied from post-injury day(PD) 1 to PD 14 after sciatic nerve injury using low frequency stimulator that gave electrical stimulation(15min/60Hz). In order observe the effect of EA and TENS, this study examined GAP-43 expression in rat lumbar spinal cord at the PD 1, PD 7 and PD 14. In addition, the stride length(SL) and toe out angle(TOA) were measured at the PD 7 and PD 4. Results; Exp I and Exp II had higher GAP-43 immunoreactivity than control group(PD 1, 7, 14). The SL of Exp I and Exp II were significantly higher than control group(PD 7, 14). The TOA of Exp I and Exp II were significantly lower than control group(PD 7, 14). Conclusion: EA and TENS application increased motor nerve recovery and expression of GAP-43 immunoreactivity after sciatic nerve crush injury. Therefore effect of TENS and EA had similar effect on nerve regeneration and functional recovery.

  • PDF

Effect of Improved Forelimb Sensorimotor Function on the Transcranial Direct Current Stimulation in a Focal Ischemic Brain Injury Rat Model (국소 허혈성 뇌손상 흰쥐 모델에서 경두개직류전기자극이 앞다리 운동감각 기능 증진에 미치는 효과)

  • Kim, Gi-Do;Sim, Ki-Cheol;Kim, Kyung-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.273-282
    • /
    • 2011
  • This study was to investigate the effect of improve forelimb sensorimotor function and neurotrophic factor(GAP-43) expression when differing an application time of tDCS in ischemic brain injury rat model(pre, $1^{st}$, $7^{th}$, $14^{th}$). Focal ischemic brain injury was induced in 80 Sprague-Dawley rats through middle cerebral artery occlusion(MCAO) by 'Longa' method. And then experimental groups were randomly divided into four groups; GroupI: MCAO induction, GroupII: application of tDCS(10 min) after MCAO induction, GroupIII: application of tDCS(20 min) after MCAO induction, GroupIV: application of tDCS(30 min) after MCAO induction. Modified limb placing test and single pellet reaching test were performed to test forelimb sensorimotor function. And the histological examination was also observed through the immunohistochemistric response of GAP-43(growth-associated protein-43) in the cerebral cortex. In modified limb placing test, groupIII(p<0.05) showed significantly improve than the other groups on $14^{th}$). day. In single pellet reaching test, groupIII(p<0.01) and groupIV(p<0.05) significantly improved on $14^{th}$) day. And in immunohistochemistric response of GAP-43, group III showed significantly positive response than the other groups on $14^{th}$ day. These results suggest that the intensity(0.1 mA)/time(20 min) condition of tDCS application has a significant impact on the sensorimotor functional recovery in focal ischemic brain injury rat models.

Increase of Synapsin I, Phosphosynapsin (ser-9), and GAP-43 in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Jung, Yeon-Joo;Huh, Pil-Woo;Park, Su-Jin;Park, Jung-Sun;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2004
  • The loss of neurons and synaptic contacts following cerebral ischemia may lead to a synaptic plastic modification, which may contribute to the functional recovery after a brain lesion. Using synapsin I and GAP-43 as markers, we investigated the neuronal cell death and the synaptic plastic modification in the rat hippocampus of a middle cerebral artery occlusion (MCAO) model. Cresyl violet staining revealed that neuronal cell damage occurred after 2 h of MCAO, which progressed during reperfusion for 2 weeks. The immunoreactivity of synapsin I and GAP-43 was increased in the stratum lucidum in the CA3 subfield as well as in the inner and outer molecular layers of dentate gyrus in the hippocampus at reperfusion for 2 weeks. The immunoreactivity of phosphosynapsin was increased in the stratum lucidum in the CA3 subfield during reperfusion for 1 week. Our data suggest that the increase in the synapsin I and GAP-43 immunoreactivity probably mediates either the functional adaptation of the neurons through reactive synaptogenesis from the pre-existing presynaptic nerve terminals or the structural remodeling of their axonal connections in the areas with ischemic loss of target cells. Furthermore, phosphosynapsin may play some role in the synaptic plastic adaptations before or during reactive synaptogenesis after the MCAO.