• 제목/요약/키워드: GAIT DEVELOPMENT

검색결과 199건 처리시간 0.025초

균형과 보행분석을 위한 스마트 인솔의 신뢰도와 타당도 분석 (The Reliability and Validity of Smart Insole for Balance and Gait Analysis)

  • 이병권;한동욱;김창용;김기영;박대성
    • 대한통합의학회지
    • /
    • 제9권4호
    • /
    • pp.291-298
    • /
    • 2021
  • Purpose: The Pedisole is a newly developed shoe-mounted wearable assessment system for analyzing balance and gait. This study aimed to determine the reliability and validity of the parameters provided by the system for static balance and gait analysis of healthy adults. Methods: This study included 38 healthy adults (22.4±1.9 years) with no history of injury in the lower limbs. All participants were asked to perform balance and gait tasks for undertaking measurements. For analysis of balance, both the smart Pedisole and Pedoscan systems were concurrently used to analyze the path length of the center of pressure (COP) and the weight ratio of the left and right for 10 s. Gait was measured using the smart Pedisole and GaitRite walkway systems simultaneously. The participants walked at a self-selected preferred gait speed. The cadence, stance time, swing time, and step time were used to analyze gait characteristics. Using the paired t-test, the intra-class coefficient correlation (ICC) was calculated for reliability. The Spearman correlation was used to assess the validity of the measurements. In total, data for balance from 36 participants and the gait profiles of 37 participants were evaluated. Results: There were significant differences between the COP path lengths (p<.050) derived from the two systems, and a significant correlation was found for COP path length (r=.382~.523) for static balance. The ICC for COP path length and weight ratio was found to be greater than .687, indicating moderate agreement in balance parameters. The ICC of gait parameters was found to be greater than .697 except for stance time, and there was significant correlation (r=.678~.922) with the GaitRite system. Conclusion: The newly developed smart insole-type Pedisole system and the related application are useful, reliable, and valid tools for balance and gait analysis compared to the gold standard Pedoscan and the GaitRite systems in healthy individuals.

마비 환자의 정상적 보행을 위한 능동형 단하지 보조기 개발 (Development of the Active Ankle Foot Orthosis to Induce the Normal Gait for the Paralysis Patients)

  • 황성재;김정윤;황선홍;박선우;이진복;김영호
    • 대한인간공학회지
    • /
    • 제26권2호
    • /
    • pp.131-136
    • /
    • 2007
  • In this study, we developed an active ankle-foot orthosis(AAFO) which can control dorsi/ plantar flexion of the ankle joint to prevent foot drop and toe drag during walking. 3D gait analyses were performed on five healthy subjects under three different gait conditions: the normal gait without AFO, the SAFO gait with the conventional plastic AFO, and the AAFO gait with the developed AFO. As a result, the developed AAFO preeminently induced the normal gait compared to the SAFO. Additionally, AAFO prevented foot drop by proper plantarflexion during loading response and provided enough plantarflexion moment as a driving force to walk forward by sufficient push-off during pre-swing. AAFO also could prevent toe drag by proper dorsiflexion during swing phase. These results indicate that the developed AAFO may have more clinical benefits to treat foot drop and toe drag, compared to conventional AFOs, and also may be useful in patients with other orthotic devices.

환경조건에 따른 보행 시 낙상 위험 여성 노인과 정상 여성 노인의 생체역학적 변인 비교 연구 (A Comparative Study on Biomechanical Variables of Elderly Women and Elderly Women at Risk of Fall in Gait by Environmental Conditions)

  • Kim, Tae-Whan;Kim, Dae-Hyun;Min, Seok-Ki;Cho, Eun-Hyung;Lee, Jin-Seok
    • 한국운동역학회지
    • /
    • 제31권3호
    • /
    • pp.189-198
    • /
    • 2021
  • Objective: The aim of this study is to investigate the effect of biomechanical variables on gait according to indoor and outdoor environmental conditions in elderly women at risk of falling. Method: 26 elderly women aged 70 years or older, and consisted of 13 elderly people with a walking speed of less 1.0 m/s and 13 people in the fall risk group as normal groups. Depending on the purpose of the study, physical examination and psychological questionnaire were prepared, and then walking was performed in an indoor/outdoor environment, and the gait pattern, muscle activity, and plantar pressure results were compared and analyzed in the elderly females through a 2 group × 2 environment 2-way repeted ANOVA analysis. Results: The gait variable showed an interaction effect the cadence. The muscle variables showed interaction effects in the rectus femoris and tibialis anterior muscles, and the interaction effects of the plantar pressure variables were confirmed in the forefoot and midfoot of the contact area, and the midfoot of the mean pressure. Conclusion: These results indicate that both groups are exposed to falls risk when gait in an outdoor environment, but the fall risk group has a higher risk of falls in both the gait pattern, muscle activity, and plantar pressure variables. The results of this study are considered to be helpful as basic data and development of exercise programs to prevent falls.

신발장착형 보행분석 트래커의 사용자경험 분석 (User Experience Analysis of a Shoe-mounted Gait Analysis Tracker)

  • 김시연;정다희;이주영;권지현;임대영;정원영
    • 한국의류산업학회지
    • /
    • 제23권3호
    • /
    • pp.390-405
    • /
    • 2021
  • Gait analysis trackers have been developed to monitor daily gait patterns to improve users' running performance and reduce the risk of injuries. A variety of gait analysis trackers are available on the market(e.g., foot pods, insoles). Depending on the type of gait analysis tracker, users' discomfort or satisfaction as well as required properties may differ. Hence, the purpose of this study was to compare and analyze user experience of three different types of commercial shoe-mounted gait analysis trackers and their mobile applications in a laboratory environment using questionnaires based on actual experiences of each product. Ten males and ten females who regularly enjoy walking and running exercises participated in the experiment. After the participants set up the tracker and application themselves without support from researchers, ten to thirty minutes' exercise was permitted on each product. Following this, the participants answered questionnaires containing evaluation variables on the device and mobile application, as well as satisfaction, intention to use, recommendation, and purchase. In addition, they were asked questions about the attractive features and shortcomings of each device and application. The results showed that the PRO-SPECS® smart insole was preferred over the others for ease of use, perceived durability, psychological burden of the design, and usefulness of the information provided by the application. Along with the results of questionnaire, this study also discussed strategies and recommendations for future product design and development.

바퀴/4 족 동작 전환으로 계단 및 문턱 오르기가 가능한 서비스 하이브리드 이동 로봇 개발 (Development of a Service Hybrid Mobile Robot for Climbing Stairs and Thresholds by Switching Wheel and Leg Gait)

  • 김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1082-1091
    • /
    • 2007
  • In this paper, we developed a new hybrid mobile robot which can climb stairs and go over thresholds by crawl gait with embedded real-time control software. This robot is also categorized into hybrid robot that has advantages of wheeled mobile robot and legged mobile robot, but adopts gait feature of crocodile named belly crawl. We imitated the belly crawl using four legs of 2 DOF, four omni-directional wheels, and embedded control software which controls legs and wheels. This software is developed using RTAI/Linux, real-time drivers. As a result, the new hybrid mobile robot has crawl gait. Using this feature, the new hybrid mobile robot can climb stairs and go over thresholds just by path planning of each leg with size of stairs and thresholds, and computing the movement distance of robot body center without considering stability. The performance of our new hybrid mobile robot is verified via experiments.

Development of Intelligent Powered Gait Orthosis for Paraplegic

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Moon, In-Hyuk;Kim, Kyung-Hoon;Mun, Mu-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1272-1277
    • /
    • 2005
  • In this study, we wolud be developed the fuzzy controlled PGO that controlled the flexion and the extension of each PGO's joint using the bio-signal and FSR sensor. The PGO driving system is to couple the right and left sides of the orthosis by specially designed hip joints and pelvic section. This driving system consists of the orthosis, sensor, control system. An air supply system of muscle is composed of an air compressor, 2-way solenoid valve(MAC, USA), accumulator, pressure sensor. Role of this system provide air muscle with the compressed air at hip joint constantly. According to output signal of EMG sensor and foot sensor, air muscles and assists the flexion of hip joint during PGO gait.

  • PDF

마이크로프로세서 제어 대퇴의지의 개발 (Development A Microprocessor Controlled Pneumatic Above-knee Prosthesis)

  • 김신기;김종권;최기원;김경훈;문무성
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.88-89
    • /
    • 1998
  • In this paper, a transfemoral prosthesis with a microprocessor controlled pneumatic knee developed at KOREC is presented. The resistance of the knee is changed automatically via a microprocessor as the amputee's gait speed changes, so that the prosthetic side of the amputee can follow the sound limb. Gait analysis has been conducted to evaluate the performance of the developed prosthesis and the improvement of the gait pattern including the gait symmetry was observed.

  • PDF

보행인식 시스템 개발 (Development of Gait Recognition System)

  • 한영환
    • 재활복지공학회논문지
    • /
    • 제8권2호
    • /
    • pp.133-138
    • /
    • 2014
  • 본 논문에서는 시공간 실루엣 분석을 사용하여 간단하지만 효율적인 보행 인식 방법을 제안한다. 각각의 이미지 시퀀스에 대해, 먼저 차분 기법과 화소기반 적응분할기법이 보행자의 실루엣을 분할하는데 사용된다. 그 후, 사람을 인식하기 위하여 보행하는 사람의 걸음수와 보폭이 실루엣 영상에서 구해진다. 124개의 객체를 포함하는 CASIA 데이터 집합에서의 실험결과는 제안된 방법의 유효성을 보여준다. 또한, 제안된 시스템은 보행자 인식에 대한 응용을 위해 충분한 적용 가능성이 있을 것으로 판단된다.

  • PDF

레일형 보행보조기구의 방향전환을 위한 턴 롤러 시스템 개발 (Development of the Turn Roller System for Changing the Direction of Rail-type Gait Training System)

  • 김지욱;양민석;우준우;김민수;손정현;정부환
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2016
  • It is needed to use the gait training system for the rehabilitation of the disabled and old people. In this study, a gait training system of turn roller type is proposed for the purpose of helping the rehabilitation. A driving mechanism with the turn roller is designed by using the RecurDyn which is the dynamic analysis program. RecurDyn is used to analyze the dynamic behavior of the gait training system. The static load analysis is carried out to investigate the safety of this system. From the operating test of this system, it is noted that the driving error is little and the load capacity is 130 kgf.