• Title/Summary/Keyword: GAIN

Search Result 15,587, Processing Time 0.044 seconds

The optimum gain design of PI Controller using a speed estimation in Sensorless vector-control (센스리스 벡터제어의 속도추정 기에 사용되는 PI제어기의 최적이득 설계)

  • Kim, Hyung-Jun;Cho, Nae-Sue;Ku, Bon-Ho;Youn, Kyung-Sup;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.614-616
    • /
    • 2004
  • It is waste of time in industrial plant that the PI controller gain tuning. The PI controller has many trial-and-error steps for gain design. This paper proposes the optimum gain design of PI controller using a speed estimation in sensorless vector-control. In this method, a degree of stability and Hurwitz theory are applied and the controller gain is expressed by system parameters.

  • PDF

An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine (풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과)

  • Lim, Chae-Wook;Jo, Jun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

A New Expression of Near-Field Gain Correction Using Photonic Sensor and Planar Near-Field Measurements

  • Hirose, Masanobu;Kurokawa, Satoru
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 2012
  • We propose a new expression of the near-field gain correction to calculate the on-axis far-field gain from the onaxis near-field gain for a directive antenna. The new expression is represented by transversal vectorial transmitting characteristics of two antennas that are measured by planar near-field equipment. Due to the advantages of the photonic sensor, the utilization of the new expression realizes the measurements of the on-axis far-field gains for two kinds of double ridged waveguide horn antennas within 0.1 dB deviation from 1 GHz to 6 GHz without calibrating the photonic sensor system.

Adaptive Digital Background Gain Mismatch Calibration for Multi-lane High-speed Serial Links

  • Lim, Hyun-Wook;Kong, Bai-Sun;Jun, Young-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.96-100
    • /
    • 2015
  • Adaptive background gain calibration loop for multi-lane serial links is proposed. In order to detect and cancel gain mismatches between lanes, a single digital loop using a ${\sum}{\Delta}$ ADC is employed, which provides a real-time adaptation of gain variations and is shared among all lanes to reduce power and area. Evaluation result showed that gain mismatches between lanes were well calibrated and tracked, resulting in timing budget at $10^{-6}$ BER increased from 0.261 UI to 0.363 UI with stable loop convergence.

Optimum Array Processing with Variable Linear Constraint

  • Chang, Byong Kun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.140-144
    • /
    • 2014
  • A general linearly constrained adaptive array is examined in the weight vector space to illustrate the array performance with respect to the gain factor. A narrowband linear adaptive array is implemented in a coherent signal environment. It is shown that the gain factor in the general linearly constrained adaptive array has an effect on the linear constraint gain of the conventional linearly constrained adaptive array. It is observed that a variation of the gain factor of the general linearly constrained adaptive array results in a variation of the distance between the constraint plane and the origin in the translated weight vector space. Simulation results are shown to demonstrate the effect of the gain factor on the nulling performance.

The Digital Controller of the Single-Phas Power Factor Correction(PFC) having the Variable Gain (가변 이득을 가지는 단상 PFC 디지털 제어기)

  • 정창용
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.163-167
    • /
    • 2000
  • This paper presents the digital control of single-phase power factor correction(PFC) converter which has the variable gain according to the condition of inner control loop error. Generally the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This has a bad influence on the power factor because current loop doesn't operate smoothly in the condition that input voltage is low In particular a digital controller has more time delay than an analog controller and degrades This drops the phase margin of the total digital PFC system,. It causes the problem that the gain of current control loop isn't increased enough. In addition the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult The digital PFC controller presented in this paper has a variable gain of current control loop according to input voltage. The 1kW converter was used to verify the efficiency of the digital PFC controller.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Current Gain Characteristics of AlGaAs/GaAs HBTs with different Temperatures (온도변화에 따른 AlGaAs/GaAs HBT의 전류이득 특성)

  • 김종규;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.840-843
    • /
    • 2001
  • In this study, temperature dependency of current gain for AlGaAs/GaAs/GaAs HBT is analytically proposed over the temperature range between 300K and 600K. Energy bandgap, effective mass, intrinsic carrier concentration are considered as temperature dependent parameters. Collector current which is numerically calculated is then analytically expressed to enhance the speed of calculation for current gain. From the results, current gain decreases as the temperature increases. These results will be used to expect the unity current gain frequency f$_{T}$ in conjunction with emitter-base and collector- base capacitances.s.

  • PDF

A Study of the Gain Margin in Accordance with the PSS Inputs (PSS 입력신호에 따른 이득여유 연구)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Tae-Kyun;Shin, Jeong-Hoon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1060-1062
    • /
    • 1999
  • This paper proposes a guideline of choosing the optimum stabilizer input considering the gain margin of power system stabilizer between the optimum stabilizer gain and the allowable maximum stabilizer gain in accordance with the five inputs, such as generator shaft speed, bus frequency, electrical power, accelerating power and bus terminal voltage. The local mode damping and exciter mode damping are considered with increasing the stabilizer gain to determine each gain margin of the inputs.

  • PDF