• Title/Summary/Keyword: GAC (granular activated carbon)

Search Result 152, Processing Time 0.022 seconds

An Experimental Study on the Toluene Control Characteristics of Biofilter Packed with Compost, Peatmoss and GAC (Compost, Peatmoss, GAC의 복합 메디아로 충전된 Biofilter의 Toluene 제어특성에 관한 실험적 연구)

  • Eom, Yun-Sung;Han, Se-Hyun;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.265-276
    • /
    • 2007
  • The primary objective of this study is to investigate the effect of media on the performance of biofilters. Two types of experiments were carried out in this study. The first type of experiment used a biofilter with the media composed of three different packing materials of compost, peatmoss and GAC(granular activated carbon), whereas the second type used a biofilter with the media composed of compost only. It was found from the two experiments that the biofilter composed of compost, peatmoss and GAC showed better performance than the one composed of compost only with the higher toluene removal efficiency, lower pressure drop, and more uniform media moisture content. In particular, no appreciable media compression occurred for the biofilter composed of compost, peatmoss and GAC, whereas significant media compression took place in the biofilter composed of compost only. As suggested by the other researchers, it is likely that GAC may be responsible for the higher toluene removal efficiency in the case of the biofilter composed of mixed media especially for the early stage of biofiltration due to its adsorption capability of toluene of such high concentration as 300 ppm. It was also regarded that GAC may playa major role in maintaining lower media pressure drop in the case of the mixed media than the media with compost only because of its mechanical strength resisting to the compression. Nonetheless, further refined experiments may need to draw more accurate conclusion. The results of the additional test run using the same mixed media showed that the biofilter system using the mixed media can be consistently operated for more than 100 days very stably despite sudden change in operating conditions of temperature and flow rate.

Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process (역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가)

  • ;Okada Mitsumasa
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Change of Molecular Weight of Organic Matters through Unit Water Treatment Process and Associated Chlorination Byproducts Formation

  • Sohn, Jin-Sik;Kang, Hyo-Soon;Han, Ji-Hee;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.224-230
    • /
    • 2007
  • The objectives of this study were to evaluate the change of molecular weight (MW) profiles in natural organic matter (NOM) through various treatment processes (coagulation, granular activated carbon (GAC), and ozonation) using high performance size exclusion chromatography based on ultraviolet absorbance and dissolved organic detection (HPSEC-UVA-DOC). In addition, relationships between MW profiles and disinfection by-production (DBP) formation were evaluated. Each treatment process results in significant different effects on NOM profiles. Coagulation is effective to remove high molecular weight NOM, while GAC is effective to remove low molecular weight NOM. Ozonation removes only a small portion of NOM, while it induces a significant reduction of UV absorbance due to breakdown of the aromatic groups. All treated waters are chlorinated, and chlorination DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) are measured under formation potential conditions. Both THM and HAA formation potentials were significantly reduced through the coagulation process. GAC was more effective to reduce THM formation compared to HAA formation reduction, while ozonation showed significant HAA reduction compared to THM reduction.

Removal of Herbicide Glyphosate in a Drinking Water Treatment System

  • Navee, Angsuputiphant;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.186-193
    • /
    • 2009
  • The removal efficiency of herbicide glyphosate in a drinking water treatment system was investigated. Four major processes of a drinking water treatment system were selected and experiments were performed separately including; treatments by sodium hypochlorite (NaOCl), a sedimentation process by PAC (polyaluminum chloride), ozonation and a GAC (granular activated carbon) treatment. In the sodium hypochlorite experiment, about 50% of the glyphosate was removed by 2 mg/L of hypochlorite and more than 90% was eliminated when 5 mg/L of NaOCl was applied. Also, AMPA, the main metabolite of glyphosate, was treated with hypochlorite. More than 30% of the AMPA was removed by 2 mg/L of hypochlorite and 50% by 5 mg/L. In the PAC experiment, it was determined that more than 60% could be removed. Further experiments were performed and the results indicated that the removed amount was dependent upon the amount of soil and upon the properties of the soil especially that of clay minerals. Ozonation could oxidize glyphosate to its byproducts at about a level of 50%. In contrast, when 1 mg/L of glyphosate was treated with GAC, the amount removed was negligible. The results of this experiment were conclusive. We confirmed that drinking water, which has been contaminated with water polluted with glyphosate can be effectively purified by the application of the drinking water treatment processes currently used.

Sorption of ο-Cresol by Granular Activated Carbon (GAC) and Abiotic Transformation on GAC Surface (입상활성탄에 의한 오르토크레졸(ο-cresol)의 흡착과 비생물학적 변형)

  • 한인섭;김용환
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2004
  • The effects of pretreatment of GAC and dissolved oxygen (DO) on the sorption capacity for ο-cresol were investigated using pretreated GAC under oxic and anoxic conditions. Virgin GAC was used with pretreated GACs by $O_2$, acid and base as sorbents. Sorption capacity of GAC was dependent on the oxygen conditions according to the pretreatment methods. Virgin GAC showed increased sorption capacity when DO was present in the solution, while $O_2$-pretreated GAC did not show any considerable capacity change. Acid- and base-pretreated GACs were relatively more influenced by presence of DO as compared with virgin GAC. Both acid and base-pretreated GACs showed a rapid sorption rate at the initial stage, but as contact time became longer the sorption was slower. Sorbed ο-cresol was extracted with micro-Soxhlet extraction apparatus using the GAC separated from the rate experiments. Within 1 hour both acid and base-pretreated GACs showed the decrease in extraction efficiencies under both oxic and anoxic conditions. After 1 hour such a trend (the increase as contact time was longer) was not observed and showed relatively constant efficiencies of 35∼50%. According to the results of this study $O_2$contacted with GAC before sorption as well as DO present in the solution during sorption could influence the GAC sorption capacity.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of Organic Materials in $N_2$-back-flushing (세라믹 정밀여과 및 활성탄 흡착 혼성공정에 의한 고탁도 원수의 고도정수처리: 질소 역세척 시 유기물의 영향)

  • Park, Jin-Yong;Park, Gil-Yong
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.203-211
    • /
    • 2009
  • In this study, we used the hybrid module that was composed of granular activated carbons (GAC) packing between module inside and outside of tubular ceramic microfiltration membrane for advanced drinking water treatment. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. $N_2$-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling and to improve permeate flux (J). As a result, resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L step by step, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were excellent above 99.36% and 97.19%, respectively, but that of $UV_{254}$ absorbance for only microfiltration without GAC at 10 mg/L of humic acid was decreased a little as 90.84%.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Study of new adsorption isotherm model and kinetics of dissolved organic carbon in synthetic wastewater by granular activated carbon (입상활성탄에 의한 합성폐수의 용존유기물질의 새로운 흡착등온 모델 및 운동학적 흡착 연구)

  • Kim, Seoung-Hyun;Shin, Sunghoon;Kim, Jinhyuk;Woo, Dalsik;Lee, Hosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2029-2035
    • /
    • 2014
  • In this study, we conducted the adsorption equilibrium and batch experiments of dissolved organic carbon (DOC) in the wastewater by granular activated carbon (GAC). The components of organic compound were Beef extract (1.8 mg/L), Peptone (2.7 mg/L), Humic acid (4.2 mg/L), Tannic acid (4.2 mg/L), Sodium lignin sulfonate (2.4 mg/L), Sodium lauryle sulfate (0.94 mg/L), Arabic gum powder (4.7 mg/L), Arabic acid (polysaccharide) (5.0 mg/L), $(NH_4)_2SO_4$ (7.1 mg/L), $K_2HPO_4$ (7.0 mg/L), $NH_4HCO_3$ (19.8 mg/L), $MgSO_4{\cdot}7H_2O$ (0.71 mg/L), The adsorption characteristics of DOC in synthetic wastewater was described using the mathematical model through a series of isotherm and batch experiments. It showed that there was linear adsorption region in the low DOC concentration (0~2.5 mg/L) and favorable adsorption region in high concentration (2.5~6 mg/L). The synthetic wastewater used was prepared using known quantities of organic and/or inorganic compounds. Adsorption modelling isotherms were predicted by the Freundlich, Langmuir, Sips and hybrid isotherm equations. Especially, hybrid isotherm of Linear and Sips equation was a good adsorption equilibrium in the region of the both the low concentration and high concentration. In applying carbon adsorption for treating water and wastewater, hybrid adsorption equation plus linear equation with Sips equation will be a good new adsorption equilibrium model. Linear driving force approximation (LDFA) kinetic equation with Hybrid (linear+Sips) adsorption isotherm model was successfully applied to predict the adsorption kinetics data in various GAC adsorbent amounts.