• Title/Summary/Keyword: GABA transporter

Search Result 13, Processing Time 0.021 seconds

Betaine-γ-aminobutyric Acid Transporter 1 (BGT-1/mGAT2) Interacts with the PDZ Domain of Munc-18 Interacting Proteins (Mints) (Betaine-γ-aminobutyric acid transporter 1 (BGT-1/mGAT2)과 Munc-18-interacting (Mint) 단백질의 PDZ 결합)

  • Kim, Sang-Jin;Jeong, Young-Joo;Choi, Sun-Hee;Choi, Chun-Yeon;Jun, Hee-Jae;Moon, Il-Soo;Seog, Dae-Hyun;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1159-1165
    • /
    • 2012
  • The action of neuronally released ${\gamma}$-aminobutyric acid (GABA) is terminated by uptake into the neurons by GABA transporters (GATs). The mechanism underlying the stabilization and regulation of GAT2 has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with and, thereby, regulate betaine-${\gamma}$-aminobutyric acid transporter 1 (BGT-1/mGAT2). We found an interaction between BGT-1/mGAT2 and Munc-18-interacting proteins (Mints). The "T-H-L" motif at the C-terminal end of BGT-1/mGAT2 was essential for the interaction with Mint2 in the yeast two-hybrid assay. Mint2 bound to the tail region of BGT-1/mGAT2, but not to other GAT members. When co-expressed in HEK-293T cells, Mint2 was co-immunoprecipitated with BGT-1/mGAT2. In addition, we demonstrated the cellular co-localization of BGT-1/mGAT2 and Mint2 in the cells. These results suggest that Mint2 contributes to the regulation of BGT-1/mGAT2.

GLYCINE 수송체 - 신경운동성 질환과의 연계성

  • 김경만
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.11a
    • /
    • pp.34-35
    • /
    • 1993
  • Glycine은 GABA와 함께 뇌에 작용하는 중요한 억제성 신경전달 물질이다. GABA가 대뇌등에서 중요한 역할을 하는 반면, GLYCINE은 연수, 척수, 간뇌에 특히 다량 존재한다. GLYCINE은 GLYCINE RECEPTOR에 작용하여 수용체와 연결된 chloride channel의 conductance를 증가시킴으로써 target세포의 활성을 억제한다. 그러므로, glycine의 신경전달체계에 이상이 오면 spastic mouse등에서 볼수 있는 것처럼 neuromuscular disorder가 유발된다. 신경전달 물질은 presynaptic 세포에 자극이 오면 synaptic cleft로 분비가 된후 presynaptic이나 Postsynaptic 세포에 위치한 수용체에 작용하여 생리 활성을 나타내거나, 분해효소에 의해서 생리활성이 없는 물질로 바뀌든지, presynaptic cell에 위치한 transporter(수송체)에 의해서 presynaptic 세포로 reuptake되서 cycle를 끝낸다. Glycine의 경우는 synaptic cleft로 분비된 후 glycine transporter에 의해서 reuptake된다. 그러므로 glycine transporter의 활성 정도는 sysnapse내의 glycine의 농도를 조절하며 더 나아가 glycine이 glycine receptor에 작용하는 시간에 영향을 줌으로써 target 세포의 활성정도를 결정한다.

  • PDF

Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli

  • Pham, Van Dung;Somasundaram, Sivachandiran;Park, Si Jae;Lee, Seung Hwan;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.710-716
    • /
    • 2016
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway.

Enchancement of Gamma-Aminobutyric Acid Production by Co-Localization of Neurospora crassa OR74A Glutamate Decarboxylase with Escherichia coli GABA Transporter Via Synthetic Scaffold Complex

  • Somasundaram, Sivachandiran;Maruthamuthu, Murali Kannan;Ganesh, Irisappan;Eom, Gyeong Tae;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1664-1669
    • /
    • 2017
  • Gamma-aminobutyric acid is a precursor of nylon-4, which is a promising heat-resistant biopolymer. GABA can be produced from the decarboxylation of glutamate by glutamate decarboxylase. In this study, a synthetic scaffold complex strategy was employed involving the Neurospora crassa glutamate decarboxylase (GadB) and Escherichia coli GABA antiporter (GadC) to improve GABA production. To construct the complex, the SH3 domain was attached to the N. crassa GadB, and the SH3 ligand was attached to the N-terminus, middle, and C-terminus of E. coli GadC. In the C-terminus model, 5.8 g/l of GABA concentration was obtained from 10 g/l glutamate. When a competing pathway engineered strain was used, the final GABA concentration was further increased to 5.94 g/l, which corresponds to 97.5% of GABA yield. With the introduction of the scaffold complex, the GABA productivity increased by 2.9 folds during the initial culture period.

Developmental changes in GABAA tonic inhibition are compromised by multiple mechanisms in preadolescent dentate gyrus granule cells

  • Pandit, Sudip;Lee, Gyu Seung;Park, Jin Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • The sustained tonic currents ($I_{tonic}$) generated by ${\gamma}$-aminobutyric acid A receptors ($GABA_{A}Rs$) are implicated in diverse age-dependent brain functions. While various mechanisms regulating $I_{tonic}$ in the hippocampus are known, their combined role in $I_{tonic}$ regulation is not well understood in different age groups. In this study, we demonstrated that a developmental increase in GABA transporter (GAT) expression, combined with gradual decrease in $GABA_AR{\alpha}_5$ subunit, resulted in various $I_{tonic}$ in the dentate gyrus granule cells (DGGCs) of preadolescent rats. Both GAT-1 and GAT-3 expression gradually increased at infantile ($P_{6-8}$ and $P_{13-15}$) and juvenile ($P_{20-22}$ and $P_{27-29}$) stages, with stabilization observed thereafter in adolescents ($P_{34-36}$) and young adults ($P_{41-43}$). $I_{tonic}$ facilitation of a selective GAT-1 blocker (NO-711) was significantly less at $P_{6-8}$ than after $P_{13-15}$. The facilitation of $I_{tonic}$ by SNAP-5114, a GAT-3 inhibitor, was negligible in the absence of exogenous GABA at all tested ages. In contrast, $I_{tonic}$ in the presence of a nonselective GAT blocker (nipecotic acid, NPA) gradually decreased with age during the preadolescent period, which was mimicked by $I_{tonic}$ changes in the presence of exogenous GABA. $I_{tonic}$ sensitivity to L-655,708, a $GABA_AR{\alpha}_5$ subunit inverse agonist, gradually decreased during the preadolescent period in the presence of NPA or exogenous GABA. Finally, Western blot analysis showed that the expression of the $GABA_AR{\alpha}_5$ subunit in the dentate gyrus gradually decreased with age. Collectively, our results suggested that the $I_{tonic}$ regulation of altered GATs is under the final tune of $GABA_AR{\alpha}_5$ subunit activation in DGGCs at different ages.

Distinct cell populations of ventral tegmental area process motivated behavior

  • Kim, Min Jung;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.307-312
    • /
    • 2022
  • It is well known that dopamine transmission from the ventral tegmental area (VTA) modulates motivated behavior and reinforcement learning. Although dopaminergic neurons are the major type of VTA neurons, recent studies show that a significant proportion of the VTA contains GABAergic and type 2 vesicular glutamate transporter (VGLUT2)-positive neurons. The non-dopaminergic neurons are also critically involved in regulating motivated behaviors. Some VTA neurons appear to co-release two different types of neurotransmitters. They are VGLUT2-DA neurons, VGLUT2-GABA neurons and GABA-DA neurons. These co-releasing neurons show distinct features compared to the neurons that release a single neurotransmitter. Here, we review how VTA cell populations wire to the other brain regions and how these projections differentially contribute to motivated behavior through the distinct molecular mechanism. We summarize the activities, projections and functions of VTA neurons concerning motivated behavior. This review article discriminates VTA cell populations related to the motivated behavior based on the neurotransmitters they release and extends the classical view of the dopamine-mediated reward system.

Interaction of GAT1 with Ubiquitin-Specific Protease Usp14 in Synaptic Terminal (GAT1과 ubiquitin-specific protease Usp14의 결합)

  • Seog, Dae-Hyun;Kim, Sang-Jin;Joung, Young-Ju;Yea, Sung-Su;Park, Yeong-Hong;Kim, Moo-Seong;Moon, Il-Soo;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1005-1011
    • /
    • 2010
  • $\gamma$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABA transporters (GATs) control extracellular GABA levels by reuptake of released GABA from the synaptic cleft. However, how GATs are regulated has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of GAT1, the major isoform in the brain and find a specific interaction with the ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme. Usp14 protein bound to the tail region of GAT1 and GAT2 but not to other GAT members in the yeast two-hybrid assay. The C-terminal region of Usp14 is essential for interaction with GAT1. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT1 specifically co-immunoprecipitated Usp14 from mouse brain extracts. These results suggest that Usp14 may regulate the number of GAT1 at the cell surface.

Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?

  • Lee, Jae-Hee;Back, Seung-Keun;Lim, Eun-Jeong;Cho, Gyu-Chong;Kim, Myung-Ah;Kim, Hee-Jin;Lee, Min-Hee;Na, Heung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.59-69
    • /
    • 2010
  • Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists ($1{\mu}g$ bicuculline/rat and $5{\mu}g$ phaclofen/rat), agonists ($1{\mu}g$ muscimol/rat and $0.5{\mu}g$ baclofen/rat) or GABA transporter (GAT) inhibitors ($20{\mu}g$ NNC-711/rat and $1{\mu}g$ SNAP-5114/rat) into naive or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABAA and GABAB) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naive animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.

(γ-Aminobutyric Acid Transporter 2 Binds to the PDZ Domain of Mammalian Lin-7 ((γ-Aminobutyric acid transporter 2와 mammalian Lin-7의 PDZ결합)

  • Seog, Dae-Hyun;Moon, II-Soo
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.940-946
    • /
    • 2008
  • Neurotransmitter transporters, which remove neurotransmittesr from the synaptic cleft, are regulated by second messenger such as protein kinases and binding proteins. Neuronal ${\gamma}-aminobutyric$ acid transporters (GATs) are responsible for removing the inhibitory neurotransmitter ${\gamma}-aminobutyric$ acid (GABA) from the synaptic cleft. ${\gamma}-aminobutyric$ acid transporters 2 (GAT2/BGT1) is involved in regulating neurotransmitter recycling, but the mechanism how they are stabilized and regulated by the specific binding protein has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the C-terminal region of GAT2 and found a specific interaction with the mammalian LIN-7b (MALS-2). MALS-2 protein bound to the tail region of GAT2 but not to other GAT members in the yeast two-hybrid assay. The "T-X-L" motif at the C-terminal end of GAT2 is essential for interaction with MALS-2. In addition, this protein showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT2 specifically co-immunoprecipitated MALS associated with GAT2 from mouse brain extracts. These results suggest that MALS may stabilize GAT2 in brain.

Anti-depressant and anti-anxiety effects of Saccharomyces cerevisiae extract and its hydrolyzed fraction (효모 추출물 SCE 및 그 분획 SCE-40의 항 우울 및 항 불안 효과)

  • Jung, Eun-Yee;Jeong, Min-Suk;Kwon, Young-Bae;Choi, Yoon-Suk;Pyun, Kwang-Ho;Kim, Ki-Won;Shim, In-Sop
    • Science of Emotion and Sensibility
    • /
    • v.10 no.2
    • /
    • pp.243-252
    • /
    • 2007
  • Anti-depressant and anti-anxiety effects of Saccharomyces cerevisiae extract and its hydrolyzed fraction. The purpose of the present study was to examine the effect of Saccharomyces cerevisiae extract (SCE) and its hydrolyzed fraction (SCE-40) on depression and anxiety-related behaviors in mice. Actions of SCE and SCE-40 on serotonin, norepinephrine and GABAergic systems in the rat cerebral cortex membranes were also examined. SCE and SCE-40 significantly reduced the immobility time in the forced swimming and tail suspension test in mice. Duration time of the open arms in the elevated plus maze test was significantly increased in the SCE and SCE-40-treated groups, compared with the saline-treated control group. SCE and its fraction SCE-40 significantly inhibited serotonin and norepinephrine transporter and GABA receptor binding, compared to the saline-treated group. In addition, serotonin and norepinephrine reuptake were significantly suppressed by SCE and SCE-40. These results demonstrate that SCE and SCE-40 produce anti-depressant and anti-anxiety effects through enhancing central serotonin, norepinephrine and GABAergic transmissions. These results suggest that SCE and SCE-40 as functional food might prove to be an effective antidepressant and anti-anxiety agent.

  • PDF