• 제목/요약/키워드: GA-based optimization

검색결과 426건 처리시간 0.022초

Construction Claims Prediction and Decision Awareness Framework using Artificial Neural Networks and Backward Optimization

  • Hosny, Ossama A.;Elbarkouky, Mohamed M.G.;Elhakeem, Ahmed
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권1호
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM). The CIPM is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was then applied to develop the Decision Awareness Model (DAM). The DAM combined the three artificial neural networks of the CIPM to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project's total cost, original duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel$^{(R)}$ and EVOLVERTM V.5.5. It provides projects' owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a construction project.

다양한 위협 하에서 복수 무인기의 경로점 계획을 위한 계층적 입자 군집 최적화 (Hierarchical Particle Swarm Optimization for Multi UAV Waypoints Planning Under Various Threats)

  • 정원모;김명건;이산하;이상필;박춘신;손흥선
    • 한국항공우주학회지
    • /
    • 제50권6호
    • /
    • pp.385-391
    • /
    • 2022
  • 본 논문에서는 경사 하강법 기반의 경로 생성(GBPP)과 입자 군집 최적화(PSO)를 결합하여 3차원 공간에서 금지구역, 지형정보, 고정익 특성 등을 고려한 경로 생성 알고리즘을 제안한다. 기존의 GBPP 방법의 경우 빠르게 경로 생성이 가능하지만 초기 경로에 따라 지역적 최적 값에 빠져 안전하지 않은 경로가 생성될 수 있다. 유전 알고리즘(GA)과 PSO 등 생물학에서 영감을 받은 군집 지능 알고리즘들의 경우 다양한 경로들을 샘플링하여 지역적 최적 값 문제를 해결할 수 있다. 다만 무인기와 경로점 개수가 증가하여 최적 변수가 증가할 경우 군집 개수를 늘려야 하고 계산 시간이 크게 증가한다. 두 알고리즘 단점을 보완하고자 본 연구에서는 GBPP 입력 값인 초기경로를 수평, 수직 방향에 대한 변위 두 가지 변수로 정의하고 이를 PSO 변수로 정의하여 계층적 경로 최적화 알고리즘 HPSO를 제안한다. 제안한 알고리즘은 통용되는 비행 제어 컴퓨터(FCC)의 software-in-the-loop simulation(SILS)을 사용하여 고정익 무인기에 대한 사용 가능성을 검증하였다.

최적화 기법 기반의 항공기 스케줄러 개발 및 실제 공항의 수치적 모사 (A development of an Optimization-Based Flight Scheduler and Its Simulation-Based Application to Real Airports)

  • 유민석;송재훈;최성임
    • 한국항공우주학회지
    • /
    • 제41권9호
    • /
    • pp.681-688
    • /
    • 2013
  • 불가피하게 급증하는 항공기 수요량에 따른 여러 가지 문제들을 해결하는 방안으로 항공기의 지연시간을 줄여, 공항의 수용력을 극대화하는 항공교통관리가 주목받고 있다. 본 논문은 공항주변 항공교통흐름을 원활히 하여 항공기 처리량을 최대화하는 항공기 스케줄링의 최적화를 목적으로 한다. 본 연구에서 개발한 스케줄링 기법은 스케줄링 문제를 수학적으로 모델링한 후, 혼합정수선형계획법과 유전자 알고리즘을 도입하여 항공기 지연시간을 최소로 하는 최적의 스케줄링을 제공한다. 최적화된 스케줄링과 실제 인천 공항에서의 항공기 스케줄링과 비교해 보았고, 그 결과 최적화된 스케줄링이 제공하는 항공기 처리량이 현재 인천 공항에서 처리하는 항공기보다 현저히 높다는 결과를 확인할 수 있었다. 본 연구에서 개발한 스케줄러는 향후 항공기의 포화 상태를 적절하게 대처하는데 큰 도움을 줄 것이라 예상되어진다.

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행 (Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms)

  • 전권수;권오흥;박종현
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

Optimization of Backside Etching with High Uniformity for Large Area Transmission-Type Modulator

  • Lee, Soo-Kyung;Na, Byung-Hoon;Ju, Gun-Wu;Choi, Hee-Ju;Lee, Yong-Tak
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.319-320
    • /
    • 2012
  • Large aperture optical modulator called optical shutter is a key component to realize time-of-flight (TOF) based three dimensional (3D) imaging systems [1-2]. The transmission type electro-absorption modulator (EAM) is a prime candidate for 3D imaging systems due to its advantages such as small size, high modulation performance [3], and ease of forming two dimensional (2D) array over large area [4]. In order to use the EAM for 3D imaging systems, it is crucial to remove GaAs substrate over large area so as to obtain high uniformity modulation performance at 850 nm. In this study, we propose and experimentally demonstrate techniques for backside etching of GaAs substrate over a large area having high uniformity. Various methods such as lapping and polishing, dry etching for anisotropic etching, and wet etching ([20%] C6H8O7 : H2O2 = 5:1) for high selectivity backside etching [5] are employed. A high transmittance of 80% over the large aperture area ($5{\times}5mm^2$) can be obtained with good uniformity through optimized backside etching method. These results reveal that the proposed methods for backside etching can etch the substrate over a large area with high uniformity, and the EAM fabricated by using backside etching method is an excellent candidate as optical shutter for 3D imaging systems.

  • PDF

공중발사체를 위한 HTPB/LOX 하이브리드 모터의 최적설계 (Optimal Design of Hybrid Motor with HTPB/LOX for Air-Launch Vehicle)

  • 박봉교;이창진;이재우;이인석
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.53-60
    • /
    • 2004
  • F-4E를 모선으로 하는 초소형 위성을 탑재할 수 있는 공중발사체 1단 부스터용 하이브리드 모터의 최적설계를 실시하였다. 설계변수는 포트개수, 초기 산화제 플럭스, 연소실 압력, 그리고 노즐 팽창비 등을 사용하였다. 또한 서로 다른 최적화 알고리듬의 적용 가능성을 검증하기 위하여 구배법 (GBM)과 유전자 알고리듬 (GA) 방법을 각각 사용하였으며, 목적함수의 선택에 따른 최적화 결과의 변화를 살펴보기 위하여 두 가지 종류의 목적함수 (모터 중량과 모터 길이)를 사용하여 그 결과를 상호 비교하였다. 최적화 알고리듬, 그리고 목적함수의 선택과 무관하게 거의 같은 설계결과로 수렴함을 확인하였다. 최적화결과로 설계요구조건을 만족하는 총중량 704.74kg, 1단 길이 3.74m의 하이브리드 모터를 설계 할 수 있었다.

SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발 (Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method)

  • 강신문;김한조;오원석;김선영;노경태;남기엽
    • 대한화학회지
    • /
    • 제53권6호
    • /
    • pp.653-662
    • /
    • 2009
  • 흡수, 분포, 대사, 배설 특성 및 독성을 예측하기 위한 효과적인 툴을 개발하는 것은 신약개발의 초기단계에서 NCE(new chemical entity)에 대한 가장 중요한 업무 중의 하나이다. 최근에 이런 시도중의 하나로서 ADME/T(absorption, distribution, metabolism, excretion, toxicity)관련 성질들의 예측에 support vector machine(SVM)을 이용하고 있다. 그리고 SVM은 ADME/T 성질들을 정확하게 예측하는데 많이 사용 되고 있다. 그러나 SVM 모델링에 두 가지 문제가 있다. 특성 선택(feature selection) 과 매개변수 설정(parameter setting)은 여전히 해결해야 할 과제이다. 이 두 가지 문제들은 SVM 분류의 효율성과 정확도에 결정적인 영향을 끼친다. 특히 특성 선택과 최적화된 SVM 변수의 설정은 서로 영향을 주기 때문에 동시에 다루어져야 한다. 여기서 우리는 genetic algorithm(GA) – 특성 선택에 사용 – 과 grid search(GS) method– 변수최적화에 사용 – 두 가지를 통합하는 효과적인 해결책을 제시하였다. ADME/T관련 성질 중 하나인 심장부정맥을 야기시키는 hERG 이온채널 저해제 분류 모델이 여기서 제안된 GA-GS-SVM을 위해 할당되고 테스트 되었다. 1891개의 화합물을 가지는 트레이닝 셋으로 단일 모델 3개, 앙상블 모델 3개, 총 6개의 모델을 만들었고 175개의 외부 데이터를 테스트 셋으로 사용하여 검증하였다. 데이터의 불균형 문제를 해결하기 위하여 GA-GS-SVM 단일 모델에 의한 예측 정확도와 GA-GS-SVM 앙상블 모델 예측 정확도를 비교하였으며, 앙상블모델을 사용하여 예측의 정확도를 높일 수 있었다.

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.