• Title/Summary/Keyword: GA-Fuzzy Controller

Search Result 109, Processing Time 0.031 seconds

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Application of genetic algorithm to hybrid fuzzy inference engine (유전 알고리즘에 의한 Hybrid 퍼지 추론기의 구성)

  • 박세희;조현찬;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.863-868
    • /
    • 1992
  • This paper presents a method on applying Genetic Algorithm(GA), which is a well-known high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilizes Sugeno's hybrid inference method, which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the optimal parameters in the FLC. The proposed approach will be demonstrated using 2 d.o.f robot manipulator to verify its effectiveness.

  • PDF

Application of Genetic Algorithm to Hybrid Fuzzy Inference Engine

  • Park, Sae-hie;Chung, Sun-tae;Jeon, Hong-tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1992
  • This paper presents a method on applying Genetric Algorithms(GA), which is a well-know high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilized Sugeno's hybrid inference method. which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the iptimal parameters in the FLC. The proposed approach will be demonstrated using 2 d. o. f robot manipulator to verify its effectiveness.

  • PDF

On Design Intelligent Control System by Fussionf of Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전자 알고리즘 융합에 의한 지능형 제어 시스템)

  • Lee, Mal-Rye;Kim, Tae-Eun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.952-958
    • /
    • 1999
  • This paper presented the application of GAs as a means of finding optimal solutions over a parameter space in the controller design for a fuzzy control system. The performance can involve a weighted combination of various performance characteristics such as rise-time, settling-time, settling-time, overshoot. The results obtained here are compared with those for a traditional design obtained using the root-locus method. In contrast to traditional methods, the GA-based method does not require the usual mathematical processess or mathematical model of the system. In this paper, the Ga-based Fuzzy control system combining Fuzzy control theory with the GA, that is known to be very effective in the optimization problem, will be proposed The effectiveness of the proposed control system will be demonstrated by computer simulations using task tracking position system in stable and unstable linear systems. It is shown that the GA-based controller is better than the traditional controller used It stable and unstable linear systems.

  • PDF

Autonomous Guided Vehicle Control Using SOC Genetic Algorithm (적응적 유전자 알고리즘을 이용한 무인운송차의 제어)

  • Jang, Bong-Seok;Bae, Sang-Hyun;Jung, Heon
    • Journal of Internet Computing and Services
    • /
    • v.2 no.2
    • /
    • pp.105-116
    • /
    • 2001
  • According to increase of the factory-automation's(FA) in the field of production, the autonomous guided vehicle's(AGV) role is also increased, The study about an active and effective controller which can flexibly prepare for the changeable circumstance is in progressed. For this study. the research about ac1ion base system to evolve by itself is also being actively considered In this paper. we composed an ac1ive and effective AGV fuzzy controller to be able to do self-organization, For composing it. we tuned suboptimally membership function using genetic algorithm(GA) and improved the control efficiency by the self-correction and generating the control rules. self-organizing controlled(SOC) fuzzy controller proposed in this paper is capable of Self-organizing by using the characteristics of fuzzy controller and genetic algorithm. It intuitionally controls AGV and easily adapts to the circumstance.

  • PDF

A study of improvement of control performance of ship by fuzzy neutral network (퍼지 신경회로망에 의한 선박의 제어성능 개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.671-672
    • /
    • 2008
  • Hybrid intelligent technique is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using Matlab.

  • PDF

Optimal Auto-tuning of Fuzzy control rules by means of Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 제어규칙의 최적동조)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.588-590
    • /
    • 1999
  • In this paper the design method of a fuzzy logic controller with a genetic algorithm is proposed. Fuzzy logic controller is based on linguistic descriptions(in the form of fuzzy IF-THEN rules) from human experts. The auto-tuning method is presented to automatically improve the output performance of controller utilizing the genetic algorithm. The GA algorithm estimates automatically the optimal values of scaling factors and membership function parameters of fuzzy control rules. Controllers are applied to the processes with time-delay and the DC servo motor. Computer simulations are conducted at the step input and the output performances are evaluated in the ITAE.

  • PDF

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Fuzzy Modelling and Fuzzy Controller Design with Step Input Responses and GA for Nonlinear Systems (비선형 시스템의 계단 입력 응답과 GA를 이용한 퍼지 모델링과 퍼지 제어기 설계)

  • Lee, Wonchang;Kang, Geuntaek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • For nonlinear control system design, there are many studies based on TSK fuzzy model. However, TSK fuzzy modelling needs nonlinear dynamic equations of the object system or a data set fully distributed in input-output space. This paper proposes an modelling technique using only step input response data. The technique uses also the genetic algorithm. The object systems in this paper are nonlinear to control input variable or output variable. In the case of nonlinear to control input, response data obtained with several step input values are used. In the case of nonlinear to output, step input response data and zero input response data are used. This paper also presents a fuzzy controller design technique from TSK fuzzy model. The effectiveness of the proposed techniques is verified with numerical examples.