• Title/Summary/Keyword: GA-Fuzzy Controller

Search Result 109, Processing Time 0.032 seconds

Fuzzy Control of Smart Base Isolation System using Genetic Algorithm (유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.37-46
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the MR damper because the FLC has an inherent robustness and ability to handle non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. This method is efficient in improving local portions of chromosomes. Neuro fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA optimized FLC outperforms not only a passive control strategy but also a human designed FLC and a conventional semi active control algorithm.

Automatic Design of Fuzzy Controller Using Clustering and Genetic Algorithm (클러스터링과 GA를 이용한 퍼지 제어기 설계 자동화)

  • Yoon, Yong-Seock;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2953-2955
    • /
    • 2000
  • 본 논문에서는 전문가의 지식이 없는 상황에서 자동적으로 최적의 퍼지 제어기를 설계하는 방법에 대해 연구한다. 먼저 퍼지 제어기의 규칙 설정을 위해 기존의 PID 제어기의 입출력 데이터를 클러스터링한다. 군집된 데이터들로부터 클러스터의 수를 파악하고 이를 바탕으로 퍼지 제어를 위한 규칙의 수를 결정한다. 둘째로 퍼지 제어기의 여러 파라미터들은 유전자 알고리즘을 적용하여 최적화한다. GA를 이용한 최적화 과정에서는 성능평가 기준으로 기준입력에 대한 시스템 응답간의 오차와 오버슈트의 크기를 사용하여 응답이 빠르고 안정적인 제어기를 설계하도록 진화방향을 설정한다. 이렇게 만들어진 퍼지 제어기의 성능을 기존의 PID 제어기와 비교 평가한다

  • PDF

Attitude Control for Spacecraft by using Genetic Algorithm (유전자알고리즘을 이용한 우주비행체의 자세제어)

  • Heo, H.;Kim, D.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.182-186
    • /
    • 1996
  • Control of flexible spacecraft is investigated. GA(Genetic Algorithm) based Fuzzy Logic Controller is designed to implement for the attitude control of flexible satellite. The results obtained by employing GA based FLC are compared with those by FLC. It shows much shorter settling time and smaller tip mass oscillation.

  • PDF

Design of Fuzzy Controller using Multi-objective Genetic Algorithm (다목적 유전자 알고리즘을 이용한 퍼지제어기의 설계)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.209-216
    • /
    • 2005
  • The controller that can control the smart base isolation system consisting of M damper and friction pendulum systems(FPS) is developed in this study. A fuzzy logic controller (FLC) is used to modulate the M damper force because the FLC has an inherent robustness and ability to handle non-linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. When earthquake excitations are applied to the structures equipped with smart base isolation system, the relative displacement at the isolation level as well as the acceleration of the structure should be regulated under appropriate level. Thus, NSGA-II(Non-dominated Sorting Genetic Algorithm) is employed in this study as a multi-objective genetic algorithm to meet more than two control objectives, simultaneously. NSGA-II is used to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can efficiently find Pareto optimal sets that can reduce both structural acceleration and base drift from numerical studies.

  • PDF

A Case Study of Human Resource Allocation for Effective Hotel Management

  • Murakami, Kayoko;Tasan, Seren Ozmehmet;Gen, Mitsuo;Oyabu, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.54-64
    • /
    • 2011
  • The purpose of this study is to optimally allocate the human resources to tasks while minimizing the total daily human resource costs and smoothing the human resource usage. The human resource allocation problem (hRAP) under consideration contains two kinds of special constraints, i.e. operational precedence and skill constraints in addition to the ordinary constraints. To deal with the multiple objectives and the special constraints, first we designed this hRAP as a network problem and then proposed a Pareto multistage decisionbased genetic algorithm (P-mdGA). During the evolutionary process of P-mdGA, a Pareto evaluation procedure called generalized Pareto-based scale-independent fitness function approach is used to evaluate the solutions. Additionally, in order to improve the performance of P-mdGA, we use fuzzy logic controller for fine-tuning of genetic parameters. Finally, in order to demonstrate the applicability and to evaluate the performance of the proposed approach, P-mdGA is applied to solve a case study in a hotel, where the managers usually need helpful automatic support for effectively allocating hotel staff to hotel tasks.

Behavior Control of Autonomous Mobile Robot using Schema Co-evolution (스키마 공진화 기법을 이용한 자율이동로봇의 행동제어)

  • Sun, Joung-Chi;Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.123-126
    • /
    • 1998
  • The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the Meaning of these foundational concepts, simple genetic algorithm(SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithms. In this paper, we propose a new design method of an optimal fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules by experience when the input and/or output variables are going to increase. So we propose a co-evolutionary method finding optimal fuzzy rules. Our algorithm is that after constructing two population groups m de up of rule vase and its schema, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying the proposed method to a path planning problem of autonomous mobile robots when moving objects exist, we show the validity of the proposed method.

  • PDF

Hybrid Genetic Algorithm or Obstacle Location-Allocation Problem

  • Jynichi Taniguchi;Mitsuo Gen;Wang, Xiao-Dong;Takao Yokota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.191-194
    • /
    • 2003
  • Location-allocation problem is known as one of the important problem faced in Industrial Engineering and Operations Research fielde. There are many variations on this problem for different applications, however, most of them consider no obstacle existing. Since the location-allocation problem with obstacles is very complex and with many infeasible solutions, no direct method is effective to solve it. In this paper we propose a hybrid Genetic Algorithm (hGA) method for solving this problem. The proposed hGA is based on Lagrangian relaxation method and Dijkstra's shortest path algorithm. To enhance the proposed hGA, a Fuzzy Logic Controller (FLC) approach is also adopted to auto-tune the GA parameters.

  • PDF

Design of Optimized Fuzzy PI Controller for Constant Pressure Control (정압제어를 위한 최적 Fuzzy PI 제어기 설계)

  • Jo, Se-Hee;Jung, Dae-Hyung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1950-1951
    • /
    • 2011
  • 본 논문에서는 요구되는 성능을 만족시키는 최적 Fuzzy PI 제어의 정압제어로의 효율적인 적용 및 성능 향상을 위하여 유전자 알고리즘(GA: Genetic Algorithm)을 이용한 제어 설계 방법을 제시 한다. PID제어기는 이해가 쉽고 구조가 간단하여, 실제 구현이 용이하여 공정 산업분야에서 가장 널리 사용되고 있는 제어기 이다. 따라서 단일 입 출력 선형 시스템 에서는 우수한 성능을 보이나 동적 시스템, 고차 시스템 및 수학적 모델 선정이 어려운 시스템에서는 비효율 적이다. 반면, Fuzzy 제어기는 인간의 지식과 경험을 이용한 지적 제어방식으로 IF-THEN형식의 규칙으로부터 제어 입력을 결정하는 병렬형 제어기이다. 이는 과도상태에서 큰 오버슈트 없이 설정치에 도달하게 하는 속응성과 강인성이 좋은 제어기법으로 비선형성이 강하고 불확실하며 복잡한 시스템을 쉽게 제어 할 수 있다는 장점을 지닌다.

  • PDF

A Study on Torque Optimization of Planar Redundant Manipulator using A GA-Tuned Fuzzy Logic Controller (유전자 알고리즘으로 조정된 퍼지 로직 제어기를 이용한 평면 여자유도 매니퓰레이터의 토크 최적화에 관한 연구)

  • Yoo, Bong-Soo;Kim, Seong-Gon;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.642-648
    • /
    • 2008
  • A lot of researches on the redundant manipulators have been focused mainly on the minimization of joint torques. However, it is well-known that the most dynamic control algorithms using local joint torque minimization cause huge torques which can not be implemented by practical motor drivers. A new control algorithm which reduces considerably such a huge-required-torque problem is proposed in this paper. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar robot. Simulation results show that the proposed algorithm works well.

Path Planning of Autonomous Guided Vehicle Using fuzzy Control & Genetic Algorithm (유전자 알고리즘과 퍼지 제어를 적용한 자율운송장치의 경로 계획)

  • Kim, Yong-Gug;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.397-406
    • /
    • 2000
  • Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.

  • PDF