Behavior Control of Autonomous Mobile Robot using
Schema Co-evolution

Ao M3} 71HS 0|8

st xigolS=%el WEHof

Chi-Sun Joung*, Hyo-Byung Jun, and Kwee-Bo Sim

Robotics and Intelligent Information System Laboratory
Dept. of Control and Instrumentation Engineering, Chung-Ang University
221, Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
Tel:+82-2-820-5319, Fax: +82-2-817-0553

E-mail:kbsim@cau.ac kr,

URL:http://rics.cie.cau.ac.kr

ABSTRACT

The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning
of these foundational concepts, simple genetic algorithm(SGA) allocate more trials to the schemata whose average
fitness remains above average. Although SGA does well in many applications as an optimization method, still
it does not guarantee the convergence of a global optimum. Therefore as an alternative scheme, there is a growing
interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with
traditional single population evolutionary algorithms. In this paper, we propose a new design method of an optimal
fuzzy logic controller using co-evolutionary concept. In general, it is very difficult to find optimal fuzzy rules
by experience when the input and/or output variables are going to increase. So we propose a co-evolutionary
method finding optimal fuzzy rules. Our algorithm is that after constructing two population groups made up of
rule base and its schema, by co-evolving these two populations, we find optimal fuzzy logic controller. By applying
the proposed method to a path planning problem of autonomous mobile robots when moving objects exist, we

show the validity of the proposed method.

1. Introduction

Recently artificial life concept was proposed by C.
Langton and has become one of the most popular
research area as a solution of intelligent information
processing system under uncertain, complex and
dynamic environment. Main issue in artificial life is how
to implement something lifelike with computer and
robots by synthesizing phenomena normally associated
with natural living systems. The evolutionary
computation based on the natural selection theory plays
an important role in artificial life.

The concept of natural selection has influenced our
view of biological systems tremendously. Evolutionary
Algorithms(EAs) are computational models of living
system's evolution process and population-based
optimization methods. EAs can provide many
opportunities for obtaining a global optimal solution, but
the performance of a system is deterministic depending
on the fitness function given by a system designer. Thus
EAs generally work on static fitness landscapes. But
natural evolution works on dynamic fitness landscapes

that change over evolutionary time as a result of
co-evolution. And co-evolution between different
species or different organs results in the current state of
complex natural systems. In this point, there is a
growing interest in co-evolutionary systems, where two
populations constantly interact and co-evolve in contrast
with traditional single population evolutionary
algorithms. This co-evolution method is more similar to
biological evolution in nature than other evolutionary

algorithms.

In this paper, we propose a co-evolution method
generating optimal fuzzy rule base, where the fitness of
a population changes according to the evolution process
of the other population. We presents how to extract
fuzzy rules using schema coevolution. In general, it is
very difficult to find fuzzy rules by hand when the
input-output variables are going to increase. In this
paper, therefore, we extract fuzzy rules by co-evolving
the fuzzy rules and their schema.

To show the effectiveness of the proposed method,
we applied our method to autonomous mobile robotic
system, the objective of which is finding a goal and
avoiding static/moving obstacles.

—123—

II. Co-Evolutionary Algorithm

Recently evolutionary algorithms, including genetic
algorithms(GAs). evolutionary strategies(ES). evolutionary
programming(EP), genetic programming (GP), has been
widely studied as a new approach to artificial life. All
of these typically work with a single population of
solution candidates scattered on the static landscape fixed
by the designer. But in nature, various feedback
mechanisms between the species undergoing selection
provide a strong driving force toward complexity. And
natural evolution works on the fitness landscapes that
changes over the evolutionary time. From this point of
view, co-evolution algorithms have much attractions in
intelligent systems.

Generally co-evolution algorithms can be classified
into two categories, which are predator-prey co-evolution
and symbiotic co-evolution.

2.1. Predator-Prey Co-Evolution[1]

Predator-prey relation is the most well-known example
of natural co-evolution. As future generations of
predators develop better attacking strategies, there is a
strong evolutionary pressure for prey to defend
themselves better. In such arms races, success on one
side is felt by the other side as failure to which one must
respond in order to maintain one's chances of survival.
This, in turn, calls for a reaction of the other side. This
process of co-volution can result in a stepwise increase
in complexity of both predator and prey[1]. Hillis[2]
proposed this concept with a problem of finding minimal
sorting network for a given number of data.

2.2. Symbiotic Co-evolution|2](3]

Symbiosis is the phenomenon in which organism of
different species live together in close association,
resulting in a raised level of fitness for one or more of
the organisms. In contrast of predator-prey, this
symbiosis has cooperative or positive aspects between
different species.

Paredis[3] proposed a symbiotic co-evolution in terms
of SYMBIOT, which uses two co-evolving populations.
One population contains permutations (orderings), the
other one consists of solution candidates to the problem
to be solved. And another approach to symbiotic
co-evolution is host-parasite relation. Just as do other
co-evolutionary algorithms, two co-evolving populations
are used. One is called host population which consists
of the candidates of solution, the other contains schema
of the solution space. This idea is based on the schema
theorem and building block hypothesis. The schema
theorem is that short, low-order, above-average schemata
receive exponentially increasing trials in subsequent
generations of a genetic algorithmf{4].

The individual of host-population is parasitized by a
schema in parasite population. By this process, useful
schema generates much more instances in host population

at the next generation.

IM. Co-evolution Schema Theorem[5]

If a string y in the parasite-population represents a
schema A, it is clear that the above parasitizing process
can be interpreted, in the context of useful schemata, as
a process of increasing the number of instances of a
schema A in the host-population. If we recall the original
schema theorem, the number of instances of a schema
H at the generation k& is changed by the amount of newly
generated instances of that schema. When the
co-evolution is considered the number of instances
m' (H, k) of a schema H in the host-population at the
generation k is expressed by

m (H, k) = m(H, &)+ m(H, k) (M
where m(H, k) is the original number of instances
of a schema H in the host-population. And mi(H, k)

is the increased number of instances by the parasitizing
process and can be stated as follows:

CH, B =5 S senl Aot B) = R, DT +1} (2)

where sgn(u) is a sign function that equals +1 for
positive # and -1 for negative «. Note that since we focus
on the newly generated instances after parasitizing, the

case that x; is identified with x,; is excluded from
the equation (2). This equation means that since the string
x, is exchanged for x/,;, in the case that the degree
of improvement in the fitness is above 0, the instances
of a schema H in the host-population are increased.
Also we can formulate the fitness of a schema H
associated with host-parasite co-evolution from its
definition. Let us denote by f "(H, k) the fitness of
a schema H after parasitized at the generation 4. Then
PIEN TR S

x&ly
m(H, k) + m(H, k) ®

where /y is a set of instances of a schema H at the

F(H k=

generation k and [, is a index set of increased instances

of a schema H after parasitized. Combining the above
equations, the schema theorem can be rewritten by
m(H,k+1) =m'(H, &) - f——f,(%ﬂ

.[1_,,6.4?}1%_%.0(11)] 4

Since the fitness of a schema H is defined as the
average fitness of all strings in the population matched
by that schema H, the fitness # '(H, £) of a schema
H after parasitized can be approximated by
f (H H=AH, 1. Especially, if the number of
strings in the host-population N> #n, the above
approximation makes sense for the large number of
generation sequences[4].

Consequently we obtain an extended schema theorem
associated with host-parasite co-evolution that is

m(H,k+1) =Um(H, &+ m(H, 8] - ﬂ—%fl

.[lﬁp(_.ijjffll*pm-o(m]. (5)

—124—

Compared with the original Schema Theorem([4][6].
the above equation means that the short, low-order,
above-average schema H would receive an exponentially
increasing number of strings in the next generation with
higher order than SGA. Additionally the parasitizing
process gives more reliable results in finding an optimal
solution. Because the parasite-population explores the
schema space, a global optimum could be found more
reliably in shorter time than SGA. When the schema
containing a solution does not exist in the population,
SGA may fail to find global optima. In the other hand,
because the useful schema can be found by the
parasite-population, co-evolution gives much more
opportunities to converge to global optima.

IV. Schema co-evolutionary Construction of FLC

4.1. Rule base Population.

The individual of rule base population consists of a
set of rules, so there are sets of rules in the rule population.
And a set of rules is made up of ten different rules. If
membership functions are partitioned into five terms and
there are »n preconditions, then the maximum number of
IF-THEN fuzzy rules is 5". This means that the input
space is divided into 5". Therefore, unless we use all
of the rules, null set problems occur when the given rule
base cannot cover the current input states. So we use
a don't-care symbol in addition to linguistic terms for
a rule chromosome. This don't-care symbol makes the
preconditions so inclusive that a small number of rules
can cover the whole input space. An example of encoding
scheme for several given rules is shown in Fig. 1.

In order to ensure the character preservingness, we
use the Elitism method and a mutation operator only as
genetic operators. This selection method is elitist and

therefore guarantees a monotonically improving
performance.
Rule Base Rule Population
R1IF xtisNL. x2is PS.[] RI - Rn
and v4 15 ZE_ THEN Nacartvm —_——
t1isPSand v2is NS WipsT+ Jze[ps|Ns] §- T+ JrL]zefps]pL]zE]

R2

T T T TTTTIT]
0 |

Rn IF x2is PL.x31s ZE
and x4 1s PS . THEN
viasPLandy2is ZE

| SE———

Pl Positinve Large, PS Posinve Small /- Zero
NS Negative Small, NI Negauve Large, * - Don t-Care

Fig. 1. An Example of fuzzy rules encoding scheme

4.2. Process of schema co-evolution

The process of host-parasite co-evolution is that a useful
schema found by the parasite-population is delivered to
the host-population according to the fitness proportionate,
and the evolutionary direction of the parasite-population
is determined by the host-population.

The fitness F, of a string y in the parasite-population

is determined as follows:

Step 1. Determine a set of strings of the host-population to
be parasitized. Namely select randomly » strings in
the host-population. which are parasitized by a
schema y.

Step 2. Letthe sampled stringsas x1, -+, x,, and the parasitized

strings as x/l\y, x/n\} A parasitized string is a
sampled string after parasitized by a schema y.

Step 3. In order to determine the fitness of a string y in the
parasite-population, we set a fitness function of one

time parasitizing as improvement of the fitness.
Folky=max[0,Ax; k) — Ax, B] (i=1,-, n)(6)
where Ax;, k)is the fitness of a string x, at

generation &, and f(ja,k) is the fitness of a

string xA,) which is parasitized by a schema y.
Step4. Thenthefitness F,ofaschemay inthe parasite-population
is

Fo= 37 @)

=1
By exchanging a string x, for 9?; which is a string
having maximum value of 7, , still one of the strings
parasitized by a schemayy, the genetic information acquired
by parasitizing is delivered to the host-population. And
as described in equation (7), the fitness of a schema in

the parasite-population is depending on the parasitized
strings in the host-population.

V. Path planning of AMR

We verify the effectiveness of the proposed
algorithm by applying it to optimal path planning of
autonomous mobile robot. The objective of this
problem is to find an optimal path when static and
moving obstacles exist. For the moving obstacle we
assumed that there are two robots with the same FLC
at the counterpart coner. Each robot's goal position is
set to the other robot's starting point and perceives the
other robot as an obstacle. A robot has three
sensors(S0,51,S2) covering * 157 to detect the
distance to a obstacle. And the direction of its goal(&)
is given, so there are four input variables. For the
outputs, FLC gives the directional changes(¢) and
speed(») of AMR.

The input/output variables' ranges are restricted as
shown in table 1. And Fig. 2 shows the AMR's sensor
configuration and situations of detecting an obstacle.

Table 1. Range of input/output variables

INPUT OUTPUT
4 SO Sl S2 ¢ v
-180° [0~200|0~200|0~200!-90" ~| 0~30
~180° | mm mm mm 90 mm

—125—

Lioal

/ Durection

Sensing
Radus

Fig. 2 Sensor Configuration

And the rule fitness measure is formulated by,

L Dr Tmin (NN' Nn)
flt“(l_DG)' T NN (8)

where T is consuming time, N, is the number of null
set, T is minimum time required to reach the goal,
and Ny is maximum number of null set.

In our case, the number of rule and schema populations
is set for 30. And the mutation probability of rule is
0.2, the crossover and mutation probability of schema
populations are set for 0.5 and 0.02, respectively. Fig.3
shows the resulting fitness compared with SGA.

Fig.3. Rule Fitness

The obtained rules after 150 generations are stated
in table 2. This rule base means that "Turn to the goal
direction, and if an obstacle exist in the direction of
moving then furn left or right although opposite
direction to the goal position.

Table 2. Rule base after 150 generations

R1 :IF Sl is VL. THEN ¢ is NL and » is ME.

R2 :IF SO is VS. S1 is MS. and S2 is ME. THEN ¢
is PS and » is VS.

R3 :IF SO is ME, and S2 is VL. THEN ¢ is ZE and
p is VS

R4 :IF @ is NS, Sl is VL. and S2 is ML, THEN ¢
is PS and » is VS

R3 :IF SO is VL. and Sl is VS. THEN ¢ is PL and
v 1s VL.

R6 : IF S1 is ME, THEN ¢ is NL. and » is ML.

R7 :IF SO is ME. S1 is ME. and S2 is ML, THEN
¢ is ZE and » is VL.

R8 :IF 4 is NL. SO is ML. and S2 is ML. THEN ¢
is NS and » is VS

RY : IF SO is VS. and S2 is ME. THEN ¢ is ZE and

v is ME.

IF ¢ is PS. SO is ME. and S1 is ME. THEN ¢

is PS and » is MS.

R10 :

VI. Conclusions

In this paper we proposed a Schema-coevolution
method to design the rule base of FLC. By applying
the proposed method to an optimal path planning
problem where moving obstacle exist, the
effectiveness of the proposed method was shown. The
idea of Schema-coevolution is based on the Schema
Theorem and Building Block Hypothesis and on the
host-parasite coevolution. The individual of
host-population(Rule) is parasitized by a schema in
parasite population. By this process, useful schema
generates much more instances in Rule populations
at the next generation. Also it gives much more
chance to find global optima than SGA because the
parasite-population searches the schema space.

Acknowledgments

This work was supported by a grant No.
KOSEF 96-01-02-13-01-3 from Korea Science and
Engineering Foundation.

References

1. Seth G. Bullock, "Co-evolutionary Design:
Implications for Evolutionary Robotics," The
3rd European Conference on Artificial Life,
1995.

2. W. Danjel Hillis, "Co-Evolving Parasites
Improve Simulated Evolution as an
Optimization Procedure." Artificial Life 11, Vol.
X, pp-313-324, 1991.

3. Jan Paredis, "Co-evolutionary Computation,”
Artificial Life, Vol. 2, No. 4, pp.355-375,
1995.

4. Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Third

Edition, Springer-Verlag, pp. 265-281, 1995.

5. K.B. Sim, H.B. Jun, "Co-Evolutionary
Algorithm and Extended Schema Theorem"
JKSIAM, vol. 2, no. 1, 1998

6. Melanie Mitchell, An [Introduction to Genetic
Algorithms, A Bradford Book, The MIT Press,
1996

—126—

