• 제목/요약/키워드: G2 cell cycle arrest

검색결과 413건 처리시간 0.025초

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

Inhibition of Cell-Cycle Progression in Human Promyelocytic Leukemia HL-60 Cells by MCS-C2, Novel Cyclin-Dependent Kinase Inhibitor

  • Kim, Min-Kyoung;Cho, Youl-Hee;Kim, Jung-Mogg;Chun, Moon-Woo;Lee, Seung-Ki;Lim, Yoong-Ho;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.607-612
    • /
    • 2003
  • To elucidate the action mechanism of MCS-C2, a novel analogue of toyocamycin and sangivamycin, its effect on the expression of cell cycle-related proteins in the human myelocytic leukemia cell line HL-60 was examined using Western blotting and a flow cytometric analysis. MCS-C2, a selective inhibitor of cyclin-dependent kinases, was found to inhibit cell growth in a time- and dose-dependent manner, and inhibits cell cycle progression by inducing the arrest at G1 and G2/M phases, in HL-60 cells. The flow cytometric analysis revealed an appreciable arrest of cells in the G2/M phase of the cell cycle after treatment with MCS-C2. The HL-60 cell population increased gradually from 13% at 0 h, to 28% at 12 h in the G2/M phase, after exposure to $2{\;}\mu\textrm{M}$ MCS-C2. Furthermore, Western blot analysis demonstrated that MCS-C2 induced the cell cycle arrest at G1 phase through the inhibition of pRb phosphorylation. Hypophosphorylated pRb accumulated after treatment with $5{\;}\mu\textrm{M}$ MCS-C2 for 12 h, whereas, the level of hyperphosphorylated pRb was reduced. Thus, treatment of the cell with MCS-C2 suppressed the hyperphosphorylated form of pRb with a commensurate increase in the hypophosphorylated form.

Celecoxib, a COX-2 Selective Inhibitor, Induces Cell Cycle Arrest at the G2/M Phase in HeLa Cervical Cancer Cells

  • Setiawati, Agustina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1655-1659
    • /
    • 2016
  • Celecoxib, a selective inhibitor of COX-2, showed cytotoxic effects in many cancer cell lines including cervical cancer cells. This study investigated the effect of celecoxib on cell cycle arrest in HeLa cervical cancer cells through p53 expression. In vitro anticancer activity was determined with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method. A double staining method was applied to investigate the mechanism of cell death, cell cycling was analyzed by flow cytometryand immunocytochemistry was employed to stain p53 expression in cells. Celecoxib showed strong cytotoxic effects and induced apoptosis with an $IC_{50}$ value of $40{\mu}M$. It induced cell cycle arrest at G2/M phase by increasing level of p53 expression on HeLa cells.

글루타민 결핍에 의한 PC3 인체 전립선 암세포의 G2/M 세포주기 억제 유발 (Induction of G2/M Cell Cycle Arrest by Glutamine Deprivation in Human Prostate Carcinoma PC3 Cells)

  • 신동역;최성현;박동일;최영현
    • 생명과학회지
    • /
    • 제23권6호
    • /
    • pp.832-837
    • /
    • 2013
  • 본 연구에서는 생체 내 구성요소 및 에너지원으로서 중요한 역할을 하는 글루타민 결핍에 의한 인체 전립선 PC3 암세포의 증식에 관한 기전 연구를 실시하였다. 글루타민 결핍에 의한 PC3 세포의 증식억제는 세포주기 G2/M arrest와 연관성이 있었으나, apoptosis 유발 현상은 관찰되지 않았다. 글루타민 결핍에 의한 G2/M arrest는 전사 및 번역 수준에서 Cdc2, cyclin A 및 cyclin B1의 발현 억제 및 p53 비의존적인 p21(WAF1/CIP1)의 발현 증가와 연관성이 있었다. 아울러 글루타민 결핍은 Chk1 및 Chk2의 인산화를 증가시켰으나, Cdc25C의 인산화는 감소시켰다. 본 연구의 결과는 글루타민 결핍에 의한 PC3 세포의 증식억제가 apoptosis 유발과는 상관없이 G2/M arrest를 유발시킨다는 첫 번째 증거이다.

In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest

  • Paramasivam, Arumugam;Raghunandhakumar, Subramanian;Priyadharsini, Jayaseelan Vijayashree;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8313-8319
    • /
    • 2016
  • We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose-dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells

  • Cruz, Joseph Flores dela;Kim, Yeon Soo;Lumbera, Wenchie Marie Lara;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6417-6421
    • /
    • 2015
  • Viscum album var (VAV) also known as mistletoe, has long been categorized as a traditional herbal medicine in Asia. In addition to its immunomodulating activities, mistletoe has also been used in the treatment of chronic hepatic disorders in China and Korea. There are numerous reports showing that VAV possesses anti-cancer effects, however influence on human hepatocarcinoma has never been elucidated. In the present study, hot water extracts of VAV was evaluated for its potential anti-cancer effect in vitro. SK-Hep1 cells were treated with VAV (50-400ug/ml) for both 24 and 48 hours then cell viability was measured by cell counting kit-8 (CCK-8). Flow cytometry analysis was used to measure the proportion of SK-Hep1 in the different stages of cell cycle. RT-PCR and Western blot analysis were conducted to measure expression of cell cycle arrest related genes and proteins respectively. VAV dose dependently inhibited the proliferation of SK-Hep1 cells without any cytotoxicity with normal Chang liver cell (CCL-13). Flow cytometry analysis showed that VAV extract inhibited the cell cycle of SK-Hep1 cells via G1 phase arrest. RT-PCR and Western blot analysis both revealed that cyclin dependent kinase 2 (Cdk2) and cyclin D1 gene expression were significantly down regulated while p21 was upregulated dose dependently by VAV treatment. Combined down regulation of Cdk2, Cyclin D1 and up regulation of p21 can result in cell death. These results indicate that VAV showed evidence of anti-cancer activity through G1 phase cell cycle arrest in SK-Hep1 cells.

자금정(紫金錠)이 간암세포주 HepG2의 세포고사 및 세포주기에 미치는 영향 (Induction of Apoptosis and Cell Cycle Arrest by Jageum-Jung in HepG2 Hepatoma Cells)

  • 조영기;전지영;신용진;설재균;이재화;원진희;문구
    • 대한한방내과학회지
    • /
    • 제28권4호
    • /
    • pp.694-708
    • /
    • 2007
  • Objectives : Jageum-Jung is used as an anti-cancer agent in oriental medicine, but the mechanism by which it induces cell death in cancer cells is still unclear. The purpose of this study was to investigate the effects of Jageum-Jung on apoptosis and cell cycle arrest in HepG2 hepatoma cells. Methods : Various cancer cell lines including HepG2, C6 glioma, SH-SY5Y, PANC-1, and MCF-7 cells, were used. Apoptosis was determined by DAPI nuclei staining and flow cytometry in HepG2 cells treated with various concentrations (from 25 to 200 ${\mu}g/ml$) of $H_2O$ extract of Jageum-Jung (JGJ) for 48 hrs. Expression of cell cycle arrest mediators including Rb, p53, p21, cyclin B1, cdk4, and cyclin E proteins were measured by Western blot analysis. To estimate intracellular hydrogen peroxide levels and intracellular nitric oxide levels, HepG2 cells were stained with DCFH-DA dye and DAF dye, subjected on flow cytometric analysis. Results : 1. Jageum-Jung decreased the viability of HepG2 cells in a dose-dependent manner. 2. Jageum-Jung induced the catalytic activation of caspase-3 in HepG2 cells. 3. Jageum-Jung increased the intracellular hydrogen peroxide and NO in HepG2 cells. 4. Jageum-Jung increased the expression of Rb, p53 and p21 in HepG2 cells. 5. Jageum-Jung induced the expression of cyclin B1, cdk4, and cyclin E in HepG2 cells. Conclusions : Taken together, we suggest that Jageum-Jung exhibits cytotoxic effects on HepG2 cells, causing apoptosis and cell cycle arrest. The results showed that Jageum-Jung may do so by regulating the expression of specific target molecules that promote efficient apoptotic cell death following $G_2$/M phase arrest in a dose-dependent manner.

  • PDF

차가버섯추출물에 의한 흑색종의 세포주기 억제효과 (Cha-ga Mushroom Water Extract induces G0/G1 Arrest in B16-F10 Melanoma cells)

  • 윤명자;송정훈
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.204-208
    • /
    • 2007
  • Chaga mushroom extract is well known as immune modulator and anti-cancer agent. However, the molecular mechanism by which Chaga exerts cell cycle arrest and apoptosis of cancer cells is poorly understood. In this study, we demonstrated anti-proliferative effects of Chaga extract on murine melanoma B16 cells. Chaga extract dose-dependently inhibited cell growth along with the arrest of G0/G1 phase and the induction of apoptotic cell death. Treatment with Chaga extract resulted in a decrease of cyclin E, cyclin D1, cdk 2, cdk 4 expression levels. Furthermore, in vivo inoculation study of B16 melanoma cells into Balb/c mice Chaga extract markedly suppressed the metastatic growth of tumor cells (6 folds, p<0.05,). These results indicate that Chaga mushroom extract induces apoptosis of B16 melanoma cells through arrest of G0/G1 phase in cell cycle.

인체 흑색종 세포에 대한 와송 추출물의 세포주기 억제를 통한 항암효과와 기전 연구 (Anticancer and Signaling Mechanisms of Biologically Active Substances from Orostachys japonicus through Arrest of Cell cycle in Human Melanoma Cells)

  • 류덕현;류덕선
    • 한방안이비인후피부과학회지
    • /
    • 제32권4호
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives : The purpose of this study was to identify the anticancer effect of biological substances of ethylacetate(EtOAc) fraction from Orostachys japonicus(OJEF), their effect on human melanoma A375 cells and the related molecular mechanisms. Methods : The MTS assay was used to confirm the inhibition of cancer cell proliferation in A375 cells. And the $MUSE^{TM}$ analyzer was used to determine the ability of OJEF to induce cell cycle arrest. Western blotting was used to determine the changes in protein expression in A375 cells after treatment with OJEF. Results : OJEF showed cytotoxicity to A375 cells. And cell cycle arrest occurred in G1 phase and G2/M phase owing to inhibition of CDK1, cyclin B1, CDK4, and cyclin D, which are related to cell cycle regulation and cell division control. Conclusion : OJEF is effective in regulating cell cycle of human melanoma cells and thus can be a good theraputic agent to treat patients with melanoma.

Ethanol extract of Innotus obliquus (Chaga mushroom) induces $G_1$ cell cycle arrest in HT-29 human colon cancer cells

  • Lee, Hyun Sook;Kim, Eun Ji;Kim, Sun Hyo
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.111-116
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS: To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were cultured in the presence of $2.5-10{\mu}g/mL$ of EEIO, and analyzed the cell cycle arrest by flow cytometry and the cell cycle controlling protein expression by Western blotting. RESULTS: Treatment cells with $2.5-10{\mu}g/mL$ of EEIO reduced viable HT-29 cell numbers and DNA synthesis, increased the percentage of cells in $G_1$ phase, decreased protein expression of CDK2, CDK4, and cyclin D1, increased expression of p21, p27, and p53, and inhibited phosphorylation of Rb and E2F1 expression. Among I. obliquus fractions, fraction 2 (fractionated by dichloromethane from EEIO) showed the same effect as EEIO treatment on cell proliferation and cell cycle-related protein levels. CONCLUSIONS: These results demonstrate that fraction 2 is the major fraction that induces $G_1$ arrest and inhibits cell proliferation, suggesting I. obliquus could be used as a natural anti-cancer ingredient in the food and/or pharmaceutical industry.