• Title/Summary/Keyword: G2 Calculation

Search Result 382, Processing Time 0.025 seconds

Improvement of Accuracy for Determination of Isosteric Heat of Hydrogen Adsorption (부피법을 이용한 저온 등량 수소 흡착열 측정법 개선)

  • Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.127-131
    • /
    • 2017
  • Isosteric heat of hydrogen adsorption is one of the most important parameters required to describe solid-state hydrogen storage systems. Typically, it is calculated from adsorption isotherms measured at 77K (liquid N2) and 87K (liquid Ar). This simple calculation, however, results in a high degree of uncertainty due to the small temperature range. Therefore, the original Sievert type setup is upgraded using a heating and cooling device to regulate the wide sample temperature. This upgraded setup allows a wide temperature range for isotherms (77K ~ 117K) providing a minimized uncertainty (error) of measurement for adsorption enthalpy calculation and yielding reliable results. To this end, we measure the isosteric heats of hydrogen adsorption of two prototypical samples: activated carbon and metal-organic frameworks (e.g. MIL-53), and compared the small temperature range (77~87K) to the wide one (77K ~ 117K).

Longitudinal Strength Analysis of Hull Girder by Direct Analysis Procedure (직접해석법(直接解析法)에 의한 선체(船體)의 종강도 해석)

  • J.G.,Shin;I.S.,Nho;B.C.,Shin;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.4
    • /
    • pp.40-48
    • /
    • 1984
  • The computer program DASH(Direct Analysis of Ship's Hull), based on the direct calculating procedure as proposed at the 4th ISSC(1970), was developed. The DASH program is designed by the following calculation procedure: 1) Derivation of the design wave loads through the ship motion analysis based on the strip theory. 2) Stress analysis of the hull girder based on the 7-degree of the freedom beam theory including the warping torsion effect. 3) Long-term prediction of the stresses based on the statistical approach using sea-spectrums and ocean wave data in the ship's route. An example calculation was performed for the purpose of a demonstration of the present approach on the 16,200 DWT Oil Tanker. The results are discussed and compared with the conventional method.

  • PDF

A calculation on the Metal-Film Mixing by Intense Pulse Ion Beam (IPIB)

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Wang, Y.G.;Xue, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.74-78
    • /
    • 2003
  • In this paper, we studied, by numerical calculation, a system, which was composed of metal-film and metal-substrate irradiated by IPIB with beam ion energy 250 keV, current density 10 to 250 A/$\textrm{cm}^2$. While the IPIB irradiation was going on, an induced effect named mixing occurred. In this case, metal-film and part of metal-substrate melted and mixed. The mixing state was kept as it was in melting phase due to the fast cooling rate. Our works were simulating the heating and cooling process via our STEIPIB program and tried to find proper parameters for a specific film-substrate system, 500 nmtitanium film coated on aluminum, to get best mixing results. The parameters calculated for such Ti-Al system were compared with the experimental results and were in good accordance to the experimental results.

The Inverse Design Technique of Axial Blade Using the Parallel Calculation (병렬 연산을 이용한 축류 블레이드의 역설계)

  • Cho, J. K.;Ahn, J. S.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.200-207
    • /
    • 1999
  • An efficient inverse design technique based on the MGM (Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The solver is parallelized by using the domain decomposition method and the standard MPI library for communications between the processors. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the axial blade. It has been found that they are well converged to their target pressure distribution.

  • PDF

Ab Initio Study of the Complexation Behavior of p-tert-Butylcalix[5]arene Derivative toward Alkyl Ammonium Cations

  • Choe, Jong-In;Lee, Sang-Hyun;Oh, Dong-Suk;Chang, Suk-Kyu;Nanbu, Shinkoh
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.190-194
    • /
    • 2004
  • The structures and complexation energies of penta-O-tert-butyl ester 1 of p-tert-butylcalix[5]arene toward a series of alkyl ammonium guests have been optimized by ab initio HF/6-31G method. The calculated complexation efficiencies of 1 for alkyl ammonium guests have been found to be similar to the values of previously reported debutylated-calix[5]arene 2. Calculation results show that both of the calix[5]aryl derivatives have much better complexation ability toward ammonium cation without alkyl group over other alkyl ammonium guests. The structural characteristics of the calculated complexes are discussed as a function of the nature of the alkyl substituents of the ammonium guests.

Uncertainty of Measurement in Nitrate Analysis from Burley Leaf Tobacco (버어리종 담배 중 질산성 질소에 대한 측정불확도)

  • Lee Jeong-Min;Lee Kyoung-Ku;Han Sang-Bin
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.226-234
    • /
    • 2005
  • The uncertainty of measurement in nitrate from burley leaf tobacco by continuous-flow analysis method was evaluated following internationally accepted guidelines. The sources of uncertainty associated with the analysis of nitrate were weight of standard and sample, purity of standard, dilution of standard solution, calibration curve, water content, etc. The calculation of uncertainty based on the GUM(Guide to the Expression of Uncertainty in Measurement) and EURACHEM/CITAC Guide. An expanded uncertainty was obtained by multiplying the combined standard uncertainty with a coverage factor (k) calculated from the effective degree of freedom. The concentration of nitrate from burley leaf tobacco was $2.09\%$ and the expanded uncertainty by multiplying by the coverage factor(k, 2.20) was $0.13\%\;at\;a\;95\%$ confidence level.

Prediction of Hydroxyl Substitution Site(s) of Phenol, Monochlorophenols and 4-Chloronitrobenzene by Atomic Charge Distribution Calculations

  • Lee, Byung-Dae;Lee, Min-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.787-790
    • /
    • 2009
  • The predictions of the radical reaction sites for phenol, 2-, 3- and 4-chlorophenols (CPs) and 4-chloronitrobenzene (CNB) were studied by atomic charge distribution calculations. The atomic charge distributions on each atom of these molecules were obtained using the CHelpG and MK (Merz-Kollman/Singh) methods with the optimized structural parameters determined by DFT calculation at the level of BLYP/6-311++G(d,p). By comparing the experimentally obtained hydroxyl addition site(s) and the calculated atomic charges on carbon atoms of phenol and CPs, we found that hydroxyl substitution by oxidation reaction mainly occurred to the carbon(s) with high atomic charges. With these results, we were easily able to predict the position(s) of the ·OH reaction site(s) of phenol, CPs and CNB through atomic charge distribution calculations.

Sparkover Voltage Estimation of Standard Sphere Gaps for Negative Polarity by Calculation of Ionization Index

  • Nishikori, Yasuo;Kojima, Soji;Kouno, Teruya
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.45-50
    • /
    • 2004
  • The field utilization factor (equation omitted) (the mean electric field / the maximum electric field) of standard sphere gaps was calculated by the charge simulation method, taking into account the ground plane and shanks. n changes mainly with g/r and slightly with 1$_1$, 1$_2$ and 1, where D=2r is the sphere diameter, g is the gap length, 1$_1$ and 1$_2$, respectively, are the lengths of the upper and lower shank, and t is the shank diameter. Generally, (equation omitted) increases as 1$_1$,1$_2$ and t each becomes larger. IEC standard 60052(2002) limits t$\leq$0.2D 1$_1$$\geq$1D and prescribes A=1$_2$+D+g where A is the height of the spark point on the upper sphere. Therefore, (equation omitted) is the largest when A=9D and the smallest when A=3D. The simple equation of a straight line, (equation omitted)=1- (g/3r), can generally be used as a representative value of (equation omitted) for a wide variety of sphere diameters that are permitted by the IEC standard. The maximum electric field E$_{m}$ at sparkover of standard air gaps has also been calculated by the relation E$_{m}$=V/(equation omitted)g). E$_{m}$ describes a U-curve for g/r, up to the sphere diameter of 1 m. Moreover, for 1.5-m and 2-m diameters and especially .for negative polarity, sparkover voltages have been calculated by integration of the ionization index.index.

Calculation of the Least Significant Change Value of Bone Densitometry Using a Dual-Energy X-ray Absorptiometry System

  • Han-Kyung Seo;Do-Cheol Choi;Cheol-Min Shim;Jin-Hyeong Jo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.95-98
    • /
    • 2023
  • Purpose: The precision error of a bone density meter reflects the equipment and reproducibility of results by an examiner. Precision error values can be expressed as coefficient of variation (CV), CV%, and root mean square-SD (RMS-SD). The International Society for Clinical Densitometry (ISCD) currently recommends using RMS-SD as the precision error value. When a 95% confidence interval is applied, the least significant change (LSC) value is calculated by multiplying the precision error value by 2.77. Exceeding the LSC value reflects a significant difference in measured bone density. Therefore, the LSC value of a bone density equipment is an essential factor for accurately determining a patient's bone density. Accordingly, we aimed to calculate the LSC value of a bone density meter (Lunar iDXA, GE) and compare it with the value recommended by the ISCD. We also assessed whether the value measured by the iDXA equipment was below the LSC value recommended by ISCD. Material and Methods: The bone densities of the lumbar spine and thighs of 30 participants were measured twice, and the LSC values were calculated using the precision calculation tool provided by the ISCD (http://www.iscd.org). To check the reproducibility of the measurement, patients were asked to completely dismount from the equipment after the first measurement; the patient was then repositioned before proceeding with the second measurement. Results: The LSC values derived using the CV% values recommended by the ISCD were 5.3% for the lumbar spine and 5.0% for the thigh. The LSC values measured using our bone density equipment were 2.47% for the lumbar spine and 1.61% for the thigh. The LSC value using RMS-SD was 0.031 g/cm2 for the lumbar spine and 0.017 g/cm2 for the thigh. Conclusion: that the findings confirm that the CV% value measured using our bone density meter and the LSC value using RMS-SD were maintained very stably. This can be helpful for obtaining accurate measurements during bone density follow-up examinations.

DFT Calculated Structures and IR Spectra of the Conformers of para-Bromocalix[4]aryl Derivatives

  • Ahn, Sangdoo;Lee, Dong-Kuk;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3514-3520
    • /
    • 2014
  • Molecular structures of the various conformers of para-bromocalix[4]aryl derivatives 1-4 were optimized using the DFT B3LYP calculation method. The total electronic and Gibbs free energies and normal vibrational frequencies of the different structures (CONE, partial cone (PACO), 1,2-Alternate(1,2-A) and 1,3-Alternate(1,3-A)) were calculated from the four kinds of para-bromocalix[4]aryl derivatives. The B3LYP/6-31G(d,p) calculations suggested the following: 1(PACO) is the most stable among four conformers of 1; 2(CONE) is the most stable among five conformers of 2; 3(PACO) is the most stable among four conformers of 3; 4(1,3-A) is the most stable among four conformers of 4. All the most stable structures optimized by the B3LYP calculation method were in accordance with the experimental crystal structures of 1-4. The calculated IR spectra of the various conformers (CONE, PACO, 1,2-A and 1,3-A) of 1-4 were compared.