• Title/Summary/Keyword: G1 progression

Search Result 421, Processing Time 0.029 seconds

The Effect of Injin and Injinsaryungsangagambang on Liver Cell Viability, Lever Cell Cycle Progression and DNA Damage-induced Apoptosis (인진(茵蔯)과 인진사령산가감방(茵蔯四岺散加減方)이 간세포활성(肝細胞活性), 세포주기(細胞週期) 및 DNA damage-induced apoptosis에 미치는 영향(影響))

  • Kang, Woo-Sung;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.91-105
    • /
    • 1999
  • The effects of Yinjin and Yinjinsaryongsangagambang on a DNA damaging agent, etoposide-induced apoptosis, cell viability, cell cycle progression, and mRNA expression of apoptosis-related genes of human hepatocyte cell line HepG2 were investigated using tryphan blue exclusion assay, MTT assay, flow cytometry, immunocytometric analysis of PCNA, and quantitative RT-PCR analysis. MTT assay showed that Yinjin and Yinjinsaryongsangagambang increases cellular viability of HepG2 cells in a dosage-dependent manner. Stimulation of cell cycle progression by Yinjin or Yinjinsaryongsangagambang was detected by flow cytometric analysis of the DNA content and immunocytometric analysis of PCNA expression. A significant reduction of a DNA-damaging agent, etoposide-induced apoptosis were found in both Yinjin and Yinjinsaryongsangagambang-treated cells in dosage-dependent manner. In overall, 3-fold reduction of apoptosis was recognized in $10.0\;{\mu}g/ml$ of Yinjin or Yinjinsaryongsangagambang-treated cells compared to untreated cells. Although the difference is not significant, Yinjinsaryongsangagambang showed slightly higher effect on the inhibition of apoptosis than Yinjin. From flow cytometric analysis of apoptosis, while 39.9% of untreated cells showed etoposide-induced apoptotic cell death, only 19.6% or 17.4% of Yinjin or Yinjinsaryongsangagambang-treated cells were fond at apoptotic sub G1 phase, respectively. Interestingly, strong induction of Gadd45-mRNA was observed from Yinjin or Yinjinsaryongsangagambang-treated cells. However, no changes in expression levels of p53 and Waf1 were detected, demonstrating that induction of Gadd45 mRNA expression by Yinjin or Yinjinsaryongsangagambang occurs by p53-independent mechanism. Marked mRNA inductions of two apoptosis-inhibiting genes, Bcl-2 and Bcl- XL, were found in both Yinjin or Yinjinsaryongsangagambang-treated HepG2 cells while no changes was detected in expression levels of an apoptosis-promoting gene, Bax.

  • PDF

Cell Cycle Arrest in Human Monocyte Cell Line by Human Cytomegalovirus (인체거대세포바이러스에 의한 인체 단핵구세포의 세포주기 저해)

  • Jang, So-Young;Kim, Mi-Suk;Lee, Chan-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • Monocytic cells in myeloid lineage are known for latent site of HCMV Previous studies have suggested that HCMV regulates cell cycle progression in a variety of cells, but studies in monocytic cells are limited. In this study, we attempted to understand cell cycle changes after HCMV infection in the monocytic cell lines. Flow cytometric analyses using propidium iodide revealed that the proportion of G0-G1 phase was increased and the proportion of S phase decreased in HCMV-infected THP-1 cells, but not in HL-60 cells. BrdU-incorporation assay supported that cell proliferation was inhibited in HCMV-infected THP-1 cells by inhibition of de novo DNA synthesis. Western blot analysis revealed that p21, inhibitor of cell cycle progression from G1 phase to S phase, was induced in HCMV-infected THP-1 cells but not in HL-60 cells. Thus, HCMV inhibited cell pro-liferation by arresting the cell cycle at G0-G1 phase through induction of p21 protein in promocytic THP-1 cells.

Association between periodontal bacteria and degenerative aortic stenosis: a pilot study

  • Kataoka, Akihisa;Katagiri, Sayaka;Kawashima, Hideyuki;Nagura, Fukuko;Nara, Yugo;Hioki, Hirofumi;Nakashima, Makoto;Sasaki, Naoki;Hatasa, Masahiro;Maekawa, Shogo;Ohsugi, Yujin;Shiba, Takahiko;Watanabe, Yusuke;Shimokawa, Tomoki;Iwata, Takanori;Kozuma, Ken
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.4
    • /
    • pp.226-238
    • /
    • 2021
  • Purpose: Although several reports have described the relationship between periodontal disease and cardiovascular disease, information about the association between periodontal disease and the progression of degenerative aortic stenosis (AS) is lacking. Therefore, we performed a retrospective, single-center, pilot study to provide insight into this potential association. Methods: Data from 45 consecutive patients (19 men; median age, 83 years) with mild or moderate degenerative aortic stenosis were analyzed for a mean observation period of 3.3±1.9 years. The total amount of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis and titers of serum immunoglobulin G (IgG) against periodontal bacteria and high-sensitivity C-reactive protein (hs-CRP) were evaluated. Aortic valve area (AVA), maximal velocity (Vmax), mean pressure gradient (mean PG), and the Doppler velocity index (DVI) were evaluated. The change in each parameter per year ([ParameterLATEST-ParameterBASELINE]/Follow-up Years) was calculated from the retrospective follow-up echocardiographic data (baseline vs. the most recently collected data [latest]). Results: No correlation was found between the concentration of periodontopathic bacteria in the saliva and AS status/progression. The anti-P. gingivalis antibody titer in the serum showed a significant positive correlation with AVA and DVI. Additionally, there was a negative correlation between the anti-P. gingivalis IgG antibody titer and mean PG. The hs-CRP concentration showed positive correlations with Vmax and mean PG. Meanwhile, a negative correlation was observed between the anti-P. gingivalis IgG antibody titer and ΔAVA/year and Δmean PG/year. The hs-CRP concentration showed positive correlations with Vmax and mean PG, and it was significantly higher in patients with rapid aortic stenosis progression (ΔAVA/year <-0.1) than in their counterparts. Conclusions: Our results suggest that periodontopathic bacteria such as A. actinomycetemcomitans and P. gingivalis are not directly related to the status/progression of degenerative AS. However, inflammation and a lower immune response may be associated with disease progression.

The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells (윤폐산에 의한 폐암세포 증식억제기전에 관한 연구)

  • Kang Yun-Keong;Park Dong Il;Lee Jun Hyuk;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

Very low protein diet plus ketoacid analogs of essential amino acids supplement to retard chronic kidney disease progression

  • Satirapoj, Bancha;Vongwattana, Peerapong;Supasyndh, Ouppatham
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.384-392
    • /
    • 2018
  • Background: A very low protein diet (VLPD) with ketoacid analogs of essential amino acids (KA/EAA) administration can remarkably influence protein synthesis and metabolic disturbances of patients with advanced chronic kidney disease (CKD), and may also slow the decline in renal function. Methods: A retrospective cohort study was carried out to monitor renal progression and metabolic and nutritional status among 140 patients with CKD stage III or IV. One group (n = 70) was on a low protein diet (LPD) with 0.6 g of protein intake, and another group (n = 70) was on a VLPD with 0.3 g of protein and KA/EAA supplementation of 100 mg/kg/day for 12 months. Results: At 12-month follow-up, estimated glomerular filtration rate (GFR) significantly decreased from $41.6{\pm}10.2$ to $36.4{\pm}8.8mL/min/1.73m^2$ (P < 0.001) and urine protein increased from $0.6{\pm}0.5$ to $0.9{\pm}1.1g/day$ (P = 0.017) in the LPD group, but no significant changes in estimated GFR and urine protein were found in the VLPD plus KA/EAA group. A significant mean difference in rate of change in estimated GFR ($-5.2{\pm}3.6mL/min/1.73m^2$ per year; P < 0.001) was observed between the two groups. After Cox regression analysis, treatment with VLPD plus KA/EAA significantly protected against the incidence of declining GFR > 10% annually (adjusted hazard ratio, 0.42; 95% confidence interval, 0.23-0.79; P = 0.006) and significant correlations were found between using VLPD plus KA/EEA and increased GFR. Conclusion: VLPD supplementation with KA/EAA is associated with delayed renal progression while preserving the nutritional status in the patients with CKD. Co-administration of VLPD and KA/EAA may prove an effective alternative to conservative management of CKD.

Iron-Saturated Lactoferrin Stimulates Cell Cycle Progression through PI3K/Akt Pathway

  • Lee, Shin-Hee;Pyo, Chul-Woong;Hahm, Dae Hyun;Kim, Jiyoung;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Iron binding lactoferrin (Lf) is involved in the control of cell cycle progression. However, the molecular basis underlying the effects of Lf on cell cycle control, as well as its target genes, remains incompletely understood. In this study, we have demonstrated that a relatively low level of ironsaturated Lf, Lf($Fe^{3+}$), can stimulate S phase cell cycle entry, and requires Akt activation in MCF-7 cells. Lf($Fe^{3+}$) immediately induced Akt phosphorylation at Ser473, which subsequently induced the phosphorylation of two G1-checkpoint Cdk inhibitors, $p21^{Cip/WAF1}$ and $p27^{kip1}$. The Lf($Fe^{3+}$)-induced phosphorylation of Cdk inhibitors impaired their nuclear import behavior, thereby inducing cell cycle progression. However, the treatment of cells with a PI3K inhibitor, LY294002, almost completely blocked Lf($Fe^{3+}$)-stimulated cell cycle progression. LY294002 treatment abrogated Lf($Fe^{3+}$)-induced Akt activation, and prevented the cytoplasmic localization of $p27^{kip1}$. Higher levels of $p21^{Cip/WAF1}$ were also detected in the cytoplasmic sub-cellular compartment as a measure of cellular response to Lf($Fe^{3+}$). Consequently, the degree of phosphorylation of retinoblastoma protein was enhanced in response to Lf($Fe^{3+}$). Therefore, we conclude that Lf($Fe^{3+}$), as a potential antagonist of Cdk inhibitors, can facilitate the functions of E2F during progression to S phase via the Akt signaling pathway.

Effects of Ginseng Radix on the Cell Cycle Regulation in Human Fetal Osteoblast (인삼이 사람태아골모세포의 세포주기조절에 미치는 영향)

  • Kim, Dae-Gyeom;Lee, Yong-Bae;Park, Sang-Kee;You, Hyung-Keun;You, Kyung-Tae;Kim, Yun-Chul;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.415-437
    • /
    • 2003
  • Ginseng Radix(GR) had been used widely from oriental medicine and the effects of it have been investigated by many researchers. The purpose of present study was to investigate the effects of GR on the cell cycle progression and its molecular mechanism in human fetal osteoblast. The results were as follows. Increased cell proliferation was observed in cells exposed to 100 ng/ml, 10 ng/ml of GR-1 at 12 hours and 24 hours, 1 ${\mu}g$/ml of GR-1 at 48 hours, and 100 ${\mu}g$/ml, 10 ${\mu}g$/ml of GK-2 at 12 hours, all treatment groups of GR-2 at 24 hours(p<0.05). S phase and G1 phase was increased in the group of treated with 100 ng/ml of GR-1, with 10 ${\mu}g$/ml and 1 ${\mu}g$/ml of GR-2, with 100 ${\mu}g$/ ml and 10 ${\mu}g$/ml of GR-3 in the cell cycle analysis. The cell cycle regulation protein levels of Cyclin D1, Cyclin E, CDK 2. CDK 4 and CDK 6 were increased in the group of treated with 1 ${\mu}g$/ml and 100 ng/ml of GR-1, with 10 ${\mu}g$/ml and 1 ${\mu}g$/ml of GR-2, with 100 ${\mu}g$/ ml and 10 ${\mu}g$/ml of GR-3. On the other hand, p21 was decreased in the treatment group with 1 ${\mu}g$/ml and 100 ng/ml of GR-1, with 10 ${\mu}g$/ml and 1 ${\mu}g$/ml of GR-2, 10 ${\mu}g$/ml of GR-3, and p53 and p16 was decreased in the treatment group with 100 ng/ml of GR-1, 100 ${\mu}g$/ml and GR-3 and pRb was decreased in the all treatment groups except 1 ${\mu}g$/ml of GR-1. These results suggested that GR increases the cell proliferation and the cell cycle progression in human fetal osteoblast, which is linked to increased cell cycle regulation protein levels of Cyclin D1 , Cyclin E, CDK 2, CDK 4, CDK 6 and decreased cell cycle regulation protein levels of p21, pRb.

Retrospective Study of Gemcitabine Based Chemotherapy for Unresectable or Recurrent Esophagus Squamous Cell Carcinoma Refractory to First Line Chemotherapy

  • Wang, Mei;Gu, Jun;Wang, Hai-Xing;Wu, Mei-Hong;Li, Yong-Mei;Wang, Ya-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4153-4156
    • /
    • 2012
  • Purpose: To investigate the efficacy and toxicity of a combination of gemcitabine with nedaplatin (GN) or cisplatin (GC) for patients with unresectable or recurrent esophagus squamous cell carcinoma. Methods: Gemcitabine was administered at 1 g/m2 intravenously on days 1 and 8; and nedaplatin or cisplatin were administered at 80 mg/m2 intravenously on day 1. We analyzed the response rate, overall survival time, progression-free survival time, and toxicity in 21 patients treated with GN and 27 patients treated with GC. Results: In patients treated with gemcitabine plus nedaplatin, the ORR was 47.6%, the median progression-free survival time was 4.1 months, and the median survival time was 9.3 months. In patients treated with gemcitabine plus cisplatin, the ORR was 48.2%, the median progression-free survival time was 3.9 months, and the median survival time was 9.1 months, respectively. There were no statistically significant differences in ORR, PFS and OS between the two groups. In both, the most commonly observed toxicities were thrombocytopenia and fatigue. Nausea and vomiting was more frequent in the GC group than in the GN group. Conclusion: Gemcitabine based chemotherapy was effective and tolerable for patients with unresectable or recurrent esophagus squamous cell carcinoma refractory to first line chemotherapy.

Insufficient radiofrequency ablation-induced autophagy contributes to the rapid progression of residual hepatocellular carcinoma through the HIF-1α/BNIP3 signaling pathway

  • Xu, Wen-Lei;Wang, Shao-Hong;Sun, Wen-Bing;Gao, Jun;Ding, Xue-Mei;Kong, Jian;Xu, Li;Ke, Shan
    • BMB Reports
    • /
    • v.52 no.4
    • /
    • pp.277-282
    • /
    • 2019
  • Currently speaking, it is noted that radiofrequency ablation (RFA) has been the most widely used treatment for hepatocellular carcinoma (HCC) occurring in patients. However, accumulating evidence has demonstrated that the incidence of insufficient RFA (IRFA) may result in the identified rapid progression of residual HCC in the patient, which can greatly hinder the effectiveness and patient reported benefits of utilizing this technique. Although many efforts have been proposed, the underlying mechanisms triggering the rapid progression of residual HCC after IRFA have not yet been fully clarified through current research literature reviews. It was shown in this study that cell proliferation, migration and invasion of residual HepG2 and SMMC7721 cells were significantly increased after the IRFA was simulated in vitro. In other words, it is noted that IRFA could do this by enhancing the image of autophagy of the residual HCC cell via the $HIF-1{\alpha}/BNIP3$ pathway. Consequently, the down-regulation of BNIP3 may result in the inhibition of the residual HCC cell progression and autophagy after IRFA. Our present study results suggest that IRFA could promote residual HCC cell progression in vitro by enhancing autophagy via the $HIF-1{\alpha}/BNIP3$ pathway. For this reason, it is noted that the targeting of the BNIP3 may be useful in preventing the rapid growth and metastasis of residual HCC after IRFA.