Insufficient radiofrequency ablation-induced autophagy contributes to the rapid progression of residual hepatocellular carcinoma through the HIF-1α/BNIP3 signaling pathway |
Xu, Wen-Lei
(Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University)
Wang, Shao-Hong (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) Sun, Wen-Bing (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) Gao, Jun (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) Ding, Xue-Mei (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) Kong, Jian (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) Xu, Li (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) Ke, Shan (Department of Hepatobiliary Surgery, Beijing Chao-yang Hospital Affiliated to Capital Medical University) |
1 | Kong J, Kong J, Pan B et al (2012) Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1alpha/VEGFA. PLoS One 7, e37266 DOI |
2 | Shiozawa K, Watanabe M, Takahashi M, Wakui N, Iida K and Sumino Y (2009) Analysis of patients with rapid aggressive tumor progression of hepatocellular carcinoma after percutaneous radiofrequency ablation. Hepatogastroenterology 56, 1689-1695 |
3 | Seki T, Tamai T, Ikeda K et al (2001) Rapid progression of hepatocellular carcinoma after transcatheter arterial chemoembolization and percutaneous radiofrequency ablation in the primary tumour region. Eur J Gastroenterol Hepatol 13, 291-294 DOI |
4 | Pua U (2013) Rapid intra-hepatic dissemination of hepatocellular carcinoma with pulmonary metastases following combined loco-regional therapy. Korean J Radiol 14, 640-642 DOI |
5 | Dong S, Kong J, Kong F et al (2013) Insufficient radiofrequency ablation promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through Akt and ERK signaling pathways. J Transl Med 11, 273 DOI |
6 | Kondo Y, Kanzawa T, Sawaya R and Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5, 726-734 DOI |
7 | Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25, 1999-2010 DOI |
8 | White E and DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15, 5308-5316 DOI |
9 | Zhou S, Zhao L, Kuang M et al (2012) Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett 323, 115-127 DOI |
10 | Bao L, Chandra PK, Moroz K et al (2014) Impaired autophagy response in human hepatocellular carcinoma. Exp Mol Pathol 96, 149-154 DOI |
11 | Fan Q, Yang L, Zhang X et al (2018) Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/beta-catenin signaling pathway activation in hepatocellular carcinoma cells. J Exp Clin Cancer Res 37, 9 DOI |
12 | Chen SJ, Hoffman NE, Shanmughapriya S et al (2014) A splice variant of the human ion channel TRPM2 modulates neuroblastoma tumor growth through hypoxia-inducible factor (HIF)-1/2alpha. J Biol Chem 289, 36284-36302 DOI |
13 | Wu H and Chen Q (2015) Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal 22, 1032-1046 DOI |
14 | Chang Q, Jurisica I, Do T and Hedley DW (2011) Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res 71, 3110-3120 DOI |
15 | Gong LL, Yang S, Zhang W et al (2018) Akebia saponin D alleviates hepatic steatosis through BNip3 induced mitophagy. J Pharmacol Sci 136, 189-195 DOI |
16 | Belibi F, Zafar I, Ravichandran K et al (2011) Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am J Physiol Renal Physiol 300, F1235-1243 DOI |
17 | Zhang N, Ma D, Wang L et al (2017) Insufficient Radiofrequency Ablation Treated Hepatocellular Carcinoma Cells Promote Metastasis by Up-Regulation ITGB3. J Cancer 8, 3742-3754 DOI |
18 | Liu Z, Dai H, Jia G, Li Y, Liu X and Ren W (2015) Insufficient radiofrequency ablation promotes human hepatoma SMMC7721 cell proliferation by stimulating vascular endothelial growth factor overexpression. Oncol Lett 9, 1893-1896 DOI |
19 | Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283, 10892-10903 DOI |
20 | Dai H, Jia G, Wang H, Yang J, Jiang H and Chu M (2017) Epidermal growth factor receptor transactivation is involved in the induction of human hepatoma SMMC7721 cell proliferation by insufficient radiofrequency ablation. Oncol Lett 14, 2463-2467 DOI |
21 | Dong S, Kong J, Kong F et al (2015) Sorafenib suppresses the epithelial-mesenchymal transition of hepatocellular carcinoma cells after insufficient radiofrequency ablation. BMC Cancer 15, 939 DOI |
22 | Kong J, Kong L, Kong J et al (2012) After insufficient radiofrequency ablation, tumor-associated endothelial cells exhibit enhanced angiogenesis and promote invasiveness of residual hepatocellular carcinoma. J Transl Med 10, 230 DOI |
23 | Ke S, Ding XM, Kong J et al (2010) Low temperature of radiofrequency ablation at the target sites can facilitate rapid progression of residual hepatic VX2 carcinoma. J Transl Med 8, 73 DOI |
24 | Onishi H, Matsushita M, Murakami T et al (2004) MR appearances of radiofrequency thermal ablation region: histopathologic correlation with dog liver models and an autopsy case. Acad Radiol 11, 1180-1189 DOI |
25 | Lee DH, Lee JM, Yoon JH, Kim YJ and Han JK (2017) Thermal Injury-induced Hepatic Parenchymal Hypoperfusion: Risk of Hepatocellular Carcinoma Recurrence after Radiofrequency Ablation. Radiology 282, 880-891 DOI |
26 | Xiang ZL, Zeng ZC, Fan J, Tang ZY, Zeng HY and Gao DM (2011) Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1alpha, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma. Clin Cancer Res 17, 5463-5472 DOI |
27 | Chourasia AH, Tracy K, Frankenberger C et al (2015) Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 16, 1145-1163 DOI |
28 | Tang A, Hallouch O, Chernyak V, Kamaya A and Sirlin CB (2018) Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (NY) 43, 13-25 DOI |
29 | Xu M, Zheng YL, Xie XY et al (2014) Sorafenib blocks the HIF-1alpha/VEGFA pathway, inhibits tumor invasion, and induces apoptosis in hepatoma cells. DNA Cell Biol 33, 275-281 DOI |
30 | Gong Q, Qin Z and Hou F (2017) Improved treatment of early small hepatocellular carcinoma using sorafenib in combination with radiofrequency ablation. Oncol Lett 14, 7045-7048 |
31 | Sun L, Li T, Wei Q et al (2014) Upregulation of BNIP3 mediated by ERK/HIF-1alpha pathway induces autophagy and contributes to anoikis resistance of hepatocellular carcinoma cells. Future Oncol 10, 1387-1398 DOI |
32 | Awan MU, Hasan M, Iqbal J et al (2014) Neuroprotective role of BNIP3 under oxidative stress through autophagy in neuroblastoma cells. Mol Biol Rep 41, 5729-5734 DOI |
33 | Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxia-induced autophagy is mediated through hypoxiainducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29, 2570-2581 DOI |
34 | Liu L, Liao JZ, He XX and Li PY (2017) The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget 8, 57707-57722 DOI |
35 | Zhao Z, Wu J, Liu X et al (2018) Insufficient radiofrequency ablation promotes proliferation of residual hepatocellular carcinoma via autophagy. Cancer Lett 421, 73-81 DOI |
36 | Bruix J, Gores GJ and Mazzaferro V (2014) Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63, 844-855 DOI |
37 | Daher S, Massarwa M, Benson AA and Khoury T (2018) Current and Future Treatment of Hepatocellular Carcinoma: An Updated Comprehensive Review. J Clin Transl Hepatol 6, 69-78 |
38 | Feng K and Ma KS (2014) Value of radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Gastroenterol 20, 5987-5998 DOI |
39 | Nishikawa H, Kimura T, Kita R and Osaki Y (2013) Radiofrequency ablation for hepatocellular carcinoma. Int J Hyperthermia 29, 558-568 DOI |