• Title/Summary/Keyword: G-Rb₁-Rc

Search Result 88, Processing Time 0.026 seconds

Isolation of Ginsenoside${-Rh}_1$ and ${-Rh}_2$ by High Performance Liquid Chromatography (고속액체(高速液體) 크로마토그래피에 의(依)한 Ginsenoside ${-Rh}_1$${-Rh}_2$ 의 분리(分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Hong, Soon-Keun;Oh, Sung-Ki;Oura, Hikokichi
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.57-66
    • /
    • 1981
  • An effective method for isolation of the major components of ginseng saponin such as $ginsenoside-Rb_{1},\;-Rb_2,$ -Rc, -Rd, -Re and $-Rg_1$, and the minor components such as ginsenoside-Rf, $-Rg_2,\;and-Rh_1$, was developed and reported in previous papers (J. Korean Agr. Chem. Soc., 23(4), 199 and 206(1980) The conditions and procedures used for isolation and identification for ginsenosides described in the previous papers were not sufficient enough for clean separation of minor components, $ginsenoside-Rh_1,\;and-Rh_2$. In this work, modifications in extraction method and in mobile phase for HPLC were attempted. It was found that application of ethyl acetate extraction at $60^{\circ}C$ for 3 hr on crude saponin resulted in a removal of diol group saponin from crude saponin which made it possible for using higher portion of acetonitrile in mobile phase. The mixed solvents of acetonitrile : water (92 : 8 and 94 : 6) gave excellent resolution of $ginsenoside-Rh_1\;and\;-Rh_2$.

  • PDF

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

Agronomic Characteristics and Chemical Component of Hybrid between Panax ginseng C. A. Meyer and Panax quinquefolius L. (고려인삼과 미국삼 종간잡종의 형질 및 성분특성)

  • Chung, Youl-Young;Chung, Chan-Moon;Jo, Jae-Seong
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.183-187
    • /
    • 2003
  • This study was carried out to ascertain the basic information on characteristics of Korean Ginseng(Panax ginseng) and American ginseng(Panax quinquefolius), F$_1$ hybrids. Interspecies hybrids between Panax ginseng and Panax quinquefolius were examined morphological characteristics, rusty root incidence, and contents of effective ingredients such as ginsenosides. The summarized results are as follows. In Panax ginseng, rusty root incidence tended to increase with age of ginseng, but there was no difference in the incidence among ginseng ages and cultivation years in Panax quinquefolius and F$_1$ hybrid. The interspecies hybrid of panax ginseng and Panax quinquefolius flowered later than the Panax ginseng, but earlier than the Panax quinquefolius. As for the characteristics of ginseng root, Panax quinquefolius seedling was better than cv. Panax ginseng, as the former had longer and heavier seedling root than the latter. Ginsenosides of the hybrid F$_1$ showed intermediate value in amounts of Rb$_1$, Rb$_2$, Rc and Rd which were detected as in Panax gineng and Panax quinquefolius. The amount of Re of the hybrid was higher, but that of Rg$_1$ and Rg$_2$ in main and branch roots was lower compared with its parents. Rf was 0.14% and 0.20% in main and branch roots of Panax ginseng, respectively; however, no Rf was detected in Panax quinquefolius and in the hybrid F$_1$. This suggests there may be remarkable difference in Rf content among the ginseng species.

Physicochemical Characteristics of 3-Year-Old Ginseng by Various Seeding Density in Direct-Sowing Culture (파종밀도에 따른 직파재배 3년근 인삼의 수량 및 품질 특성)

  • Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Hyun-Ho;Kim, Sun-Ick;Han, Seung-Ho;Lee, Ka-Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • This study was carried out to investigate the physicochemical characteristics of 3-year-old ginseng (for Samgyetang product) cultured by various seeding density in direct-sowing culture. Ginsengs were cultured by the seeding density, 275, 300, 330 352 and 396 seeds per Kan, $180{\times}90cm$ area. Survived rate (82.1%) were the highest in plot of 352 seeds sowed, length and leaf width were high in plot of 300 and 352 seeds. Root yield grain was increased with increase of the seeding density in direct-sowing culture except 352 seeds sowed. Average root weight and diameter were the highest in plot of 352 seeds sowed, 31.6 g and 18.4 mm, respectively. Crude saponin and each ginsenosides content were the highest in plot of 275 seeds sowed. Rg1 content was decreased, Rc and Rb2 content were increased with increase of the seeding density. Total soluble sugar content was the highest in plot of 330 seeds sowed and the lowest in plot of 396 seeds sowed, and oligo- and disaccaride content were high in plot of 330 and 352 seeds sowed. Reological characteristics of ginsengs cultivated according to various seeding density, hardness and springness were high and maximum fracture force was low with decrease of the seeding quantity.

Enhancement of Anticancer Activities of Low Quality Ginseng by Phelinus linteus Fermentation (상황 균사체 배양에 의한 파삼의 항암 활성 증진)

  • Ha, Ji-Hye;Jeong, Myeong-Hoon;Seo, Yong-Chang;Choi, Woon-Yong;Jeong, Heon-Sang;Jung, Jae-Hyun;Yu, Kwang-Wan;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2010
  • Low quality fresh ginseng was fermented by Pheliuus linteus mycelium at $22^{\circ}C$ for 30 days, then extracted by water solvent at $100^{\circ}C$ for 180 min. On human normal cell lines (HEK293), cytotoxicity was about 10% lower in adding extracts of the fermentation ginseng than that from low quality ginseng. The fermented extracts also inhibited the growth of several human cancer cells. Among them, respectively, digestive organs related cancer cells, such as human stomach adenocarcnioma and human epithelial adenocarcinoma were most effectively inhibited up to 85% and 90%, respectively. Then, selectivities were in the ranges of 3 to 5, compared to 2 to 3 from low quality fresh ginseng. Generally, fermented ginseng extract showed higher anticancer activities as well as higher DPPH radical sacavening activity, possibly due to high contents of total phenolic components as 6.96 mg/g. It was very interesting that the fermented ginseng contained very higher contents of ginsenoside-Rc+$Rb_2$, compared to others in low quality fresh ginseng because of partition digestion of mycelium growth. The results can tell that low quality fresh ginseng can be utilized by the fermentation with Pheliuus linteus mycelium.

EFFECTS OF GINSENG COMPONENTS ON RODENTICIDE VACOR-INDUCED DIABETES MELLITUS IN RATS (인삼성분이 살서제(Vacor)로 유발시킨 쥐의 당뇨에 미치는 영향)

  • Lee Min-wha;Lee Tai-hee;Ahn Bong-whan;Park Byung-ju;Yang Sung-yeul
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.83-88
    • /
    • 1984
  • It is now well established that the rodenticide Vacor (N-3-pyridyl-mehtyl-N'-p-nitropheny-lurea) causes a hyperglycemia in human and rats. It is also reported that there are some components (DPG-3) in ginseng radix which cause hypoglycemic effect on alloxan diabetic mice. In the present study, attempts were made to demonstrate in Vacor-poisoned rats the hypo-glycemic activity of red ginseng component(RGC), which was extracted by Kimura's DPG-3 extraction procedure and found to be effective for lowering a hyperglycemia in alloxan-diabetic rats. Vacor in a dose of $LD_{50}$ (10mg/kg) produced a glucose intolerance with a paradoxical moderate increase in blood immunoreactive insulin and derangement in glucose metabolism of epididymal adipocytes in rats. Although RGC (20mg/kg, i.p.) did not exert any significant influence on a hyperglycemia induced by large lethal doses (25mg/kg) of Vacor ingestion, it improved the LDso Vacor-induced glucose intolerance and caused a further increase in blood insulin levels in Vacor-poisoned rats. The administration of RGC (20mg/kg, i.p.) normalized Vacor-induced depression of glucose metabolism and lipogenesis in the epididymal adipocytes with an improvement of reduced responses to insulin of adipocytes from Vacor-poisoned rats. These results suggest that some red ginsneng components contained in RGC fraction normalize the depressed peripheral glucose unitlization and insulin response and eventually lead to an improvement of abnormal glucose tolerance developed in rats poisoned with small doses of Vacor.

  • PDF

Mass Culture and Ginsenoside Production of Ginseng Hairy Root by Two-Step Culture Process (2계단 배양방법을 이용한 인삼 모상근의 대량배양과 Ginsenoside 생산)

  • Ko, Kyeong-Min;Yang, Deok-Chun;Park, Ji-Chang;Choi, Kang-Ju;Choi, Kwang-Tae;Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.39 no.1
    • /
    • pp.63-69
    • /
    • 1996
  • A hairy root clone of Panax ginseng C.A. Meyer, HRB-15 was cultured iu various conditions with 3 L bubble type bioreactor to enhance both growth and ginsenoside production. The hairy roots were more rapidly grown under the dark condition than under the light condition. However, total amount of ginsenoside of hairy roots cultured under the light for 30 days increased 2 folds as compared with the dark condition and was 1.10% based on 6 ginsenosides. Especially, ginsenoside-Re was significantly increased and some ginsenosides except for ginsenoside-Re was slightly reduced. Also, the growth of hairy roots decreased about 30% as compared with the dark condition. In contrast, addition of sodium acetate led to decreased production of ginsenoside and growth of hairy roots under light condition. The influence of potassium dihydrogenphosphate concentration was examined in MS medium and a 1.25 mM concentration was found to be the most appropriate for growth and ginsenoside production under light condition. Two-step process of hairy roots culture with yeast elicitation or without ammonia in culture medium was developed to enhance growth and giusenoside synthesis. $50\;\mu\textrm{g}$ of yeast elicitor per g of fresh weight showed a synergistic effect on the ginsenoside synthesis of hairy roots on 20 days after culture. At that time, the content of total ginsenoside was 1.15%, while the growth of hairy roots decreased 21 % as compared with the dark condition. In addition, when elimination of ammonia on 20 days after culture, the content of total ginsenoside was 1.26% with significant increment of ginsenoside-Rd (0.27%) in addition to ginsenoside-Re and the growth of hairy roots decreased 10% as compared with the dark condition. In this system, we have demonstrated a unique two-step process of hairy root cultures to maximize biomass and secondary metabolites. It has found possibility to enhance ginsenosides production by growing hairy roots in this method.

  • PDF

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.