• Title/Summary/Keyword: G-Rb₁-Rc

Search Result 88, Processing Time 0.021 seconds

Relationship Between Ginsenoside Content and Stem Color Intensity of Panax ginseng (경색별인삼근(莖色別人蔘根)의 Ginsenoside 함량(含量))

  • Park, Hoon;Parklee, Qwi-Hee;Yoo, Ki-Jung
    • Applied Biological Chemistry
    • /
    • v.25 no.4
    • /
    • pp.211-217
    • /
    • 1982
  • Ginsenosides in epidermis·cortex(EC) and xylem-pith(XP) of main body of Panax ginseng(var. atropurpureacaulo) root were investigated in relation to dark purple area on stem. Pattern of ginsenosides, ratio of protopanaxatriol(PT) to diol(PD) and total ginsenoside content were significantly different between EC ana XP, and not related with stem color. The increasing trend of total ginsenosides with decreasing in purple area on stem needs to be tested with greater sample size. The order of ginsenoside content was $Rb_1>Rg_1>Re>Rc>Rg_2>Rb_2>Rf>Rd$ for EC, $Rg_1>Rb_1>Rg_2>Re>Rb_2>Rc>Rf>Rd$ for XP. PT/PD was 1.08 for EC,1.95 for XP. Since total ginsenoside content was 3 times higher in EC than in XP and weight of two parts was almost same, the content of ginsenosides of main body mostly depends on those of EC.

  • PDF

The Change of Cell-cycle Related Proteins and Tumor Suppressive Effect in Non-small Cell Lung Cancer Cell Line after Transfection of p16(MTS1) Gene (폐암세포에 p16 (MTS1) 유전자 주입후 암생성능의 변화 및 세포주기관련 단백질의 변동에 관한 연구)

  • Kim, Young-Whan;Kim, Jae-Yeol;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.796-805
    • /
    • 1997
  • Background : It is clear that deregulation of cell cycle progression is a hallmark of neoplastic transformation and genes involved in the $G_1$/S transition of the cell cycle are especially frequent targets for mutations in human cancers, including lung cancer. p16 gene product, one of the G1 cell-cycle related proteins, that is recently identified plays an important role in the negative regulation of the the kinase activity of the cyclin dependent kinase (cdk) enzymes. Therefore p16 gene is known to be an important tumor suppressor gene and is also called MTS1 (multiple tumor suppressor 1). No more oncogenes have been reported to be frequently related to multiple different malignancies than the alterations of p16 gene. Especially when it comes to non-small cell lung cancer, there was no expression of p16 in more than 70% of cell lines examined. And also it is speculated that p16 gene could exert a key role in the development of non-small cell lung cancer. This study was designed to evaluate whether p16 gene could be used as a candidate for gene therapy of non-small cell lung cancer. Methods : After the extraction of total RNA from normal fibroblast cell line and subsequent reverse transcriptase reaction and polymerase chain reaction, the amplified p16 cDNA was subcloned into eukaryotic expression plasmid vector, pRC-CMV. The constructed pRC-CMV-p16 was transfected into the NCI-H441 NSCLC cell line using lipofectin. The changes of G1 cell-cycle related proteins were investigated with Western blot analysis and immunoprecipitation after extraction of proteins from cell lysates and tumor suppressive effect was observed by clonogenic assay. Results : (1) p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 showed the formation of p16 : cdk 4 complex and decreased phosphorylated Rb protein, while control cell line did not. (2) Clonogenic assay demonstrated that the number of colony formation was markedly decreased in p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 than the control cell line. Conclusion : It is confirmed that the expression of p16 protein in p16 absent NSCLC cell line with the gene transfection leads to p16 : cdk4 complex formation, subsequent decrease of phosphorylated pRb protein and ultimately tumor suppressive effects. And also it provides the foundation for the application of p16 gene as a important candidate for the gene therapy of NSCLC.

  • PDF

A randomized, double-blind, placebo-controlled pilot study to assess the effects of protopanaxadiol saponin-enriched ginseng extract and pectinase-processed ginseng extract on the prevention of acute respiratory illness in healthy people

  • Hwang, Jeong-Hwan;Park, Soo-Hyun;Choi, Eun-Kyung;Jung, Su-Jin;Pyo, Mi Kyung;Chae, Soo-Wan
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.697-703
    • /
    • 2020
  • Background: GS-3K8 and GINST, both of which are modified ginseng extracts, have never been examined in terms of their effectiveness for the prevention of acute respiratory illness (ARI) in humans. We conducted a pilot study to assess the feasibility of performing a large-scale, randomized, controlled trial. Methods: This study was a randomized, double-blind, placebo-controlled, pilot study at a single center from October 2014 to March 2015. The 45 healthy applicants were randomly divided into the GS-3K8 (n = 15), GINST (n = 15), and placebo groups (n = 15). The study drug was administered as a capsule (500 mg/cap and 3000 mg/day). GS-3K8 contained 6.31 mg/g of Rg1, 15.05 mg/g of Re, 30.84 mg/g of Rb1, 15.02 mg/g of Rc, 12.44 mg/g of Rb2, 6.97 mg/g of Rd, 1.59 mg/g of Rg3, 3.25 mg/g of Rk1, and 4.84 mg/g of Rg5. GINST contained 7.54 mg/g of Rg1, 1.87 mg/g of Re, 5.42 mg/g of Rb1, 0.29 mg/g of Rc, 0.36 mg/g of Rb2, 0.70 mg/g of Rd, and 6.3 mg/g of compound K. The feasibility criteria were the rates of recruitment, drug compliance, and successful follow-up. The primary clinical outcome measure was the incidence of ARI. The secondary clinical outcome measures were the duration of symptoms. Results: The rate of recruitment was 11.3 participants per week. The overall rate of completed follow-up was 97.8%. The mean compliance rate was 91.64 ± 9.80%, 95.28 ± 5.75%, and 89.70 ± 8.99% in the GS-3K8, GINST, and placebo groups, respectively. The incidence of ARI was 64.3% (9/14; 95% confidence interval [CI], 31.4-91.1%), 26.7% (4/15; 95% CI, 4.3-49.0%), and 80.0% (12/15; 95% CI, 54.8-93.0%) in the GS-3K8, GINST, and placebo groups, respectively. The average days of symptoms were 3.89 ± 4.65, 9.25 ± 7.63, and 12.25 ± 12.69 in the GS-3K8, GINST, and placebo groups, respectively. Conclusion: The results support the feasibility of a full-scale trial. GS-3K8 and GINST appear to have a positive tendency toward preventing the development of ARI and reducing the symptom duration. A randomized controlled trial is needed to confirm these findings.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF

Enhancement and Conversion of Ginsenoside Contents in Cultured Wild Ginseng Adventitious Root (산삼 부정배양근의 진세노사이드 함량 증진과 성분 변환)

  • Kim, Chul Joong;Choi, Jae Hoo;Oh, Yeong Seon;Seong, Eun Soo;Lim, Jung Dae;Yu, Chang Yeon;Lee, Jae Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.445-454
    • /
    • 2020
  • Background: Culturing wild ginseng adventitious root using plant factory technology provides genetic safety and high productivity. This production technology is drawing attention in the fields of functional raw materials and product development. The cultivation method using elicitors is key technology for controlling biomass and increasing secondary metabolites. Methods and Results: Elicitor treatments using methyl jasmonate, pyruvic acid, squalene, β-sistosterol were performed to amplify total ginsenosides (Rb1, Rc, Rb2, Rb3, and Rd) of cultured wild ginseng adventitious root. Thereafter, fermentation and steaming processes were performed to convert total ginsenosides into minor molecular ginsenosides (Rg3, Rk1, and Rg5). The result indicated that methyl jasmonate minimizes the reduction in fresh weight of cultured wild ginseng adventitious root and maximizes total ginsenosides (sum of Rb1, Rc, Rb2, Rb3, and Rd). Ginsenoside conversion results showed a maximum degree of conversion of 131 mg/g. Conclusions: In this study, we demonstrated that the optimal elicitor treatment method increased the content of total ginsenosides, while the steaming and fermentation processing method increased the content of minor ginsenosides.

The Quality Characteristic of Ginseng Cultured in Bioreactor System (생물반응기에서 배양된 인삼의 품질 특성)

  • 김경은;정용진;이인선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • In the present study, we investigated the quality characteristic of ginseng cultured in bioreactor system and the optimum recipe condition of the liquid tea using cultured ginseng. The contents of soluble solid and crude saponin in cultured ginseng were 31.8% and 1.94%, respectively, which were lower than commercial ginseng. In the concentrated extract, crude saponin content was 4.77% and the contents of ginsenoside Rc, Re and Rg$_1$were 7.36, 4.40 and 1.75 mg/g, respectively. The ginsenoside Rb$_1$and Rb$_2$, main contents of commercial ginseng, were not detected. The optimum ranges of recipe on organoleptic properties of ginseng liquid tea were estimated on 9.0~10.4% of the extract, 6.8~8.1% of apple vinegar and 40% of fructose. The liquid tea using commercial ginseng showed higher scores of sensory lest than the liquid tea using cultured ginseng in bioreactor system at the given condition, 10% of the extract, 7% ofapple vinegar and 40% of fructose, with the same recipe condition ranges.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

Comparing eight types of ginsenosides in ginseng of different plant ages and regions using RRLC-Q-TOF MS/MS

  • Dai, Yu-Lin;Qiao, Meng-Dan;Yu, Peng;Zheng, Fei;Yue, Hao;Liu, Shu-Ying
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Background: This article aims to compare and analyze the contents of ginsenosides in ginseng of different plant ages from different localities in China. Methods: In this study, 77 fresh ginseng samples aged 2-4 years were collected from 13 different cultivation regions in China. The content of eight ginsenosides (Rg3, Rc, Rg1, Rf, Rb2, Rb1, Re, and Rd) was determined using rapid resolution liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (RRLC-Q-TOF MS/MS) to comparatively evaluate the influences of cultivation region and age. Results: Ginsenoside contents differed significantly depending on age and cultivation region. The contents of ginsenosides Re, Rc, Rg1, Rg3, and Rf increased with cultivation age, whereas that of ginsenoside Rb1 peaked in the third year of cultivation. Moreover, the highest ginsenoside content was obtained from Changbai (19.36 mg/g) whereas the lowest content was obtained from Jidong (12.05 mg/g). Ginseng from Jilin Province contained greater total ginsenosides and was richer in ginsenoside Re than ginseng of the same age group in Heilongjiang and Liaoning provinces, where Rb1 and Rg1 contents were relatively high. Conclusion: In this study, RRLC-Q-TOF MS/MS was used to analyze ginsenoside contents in 77 ginseng samples aged 2-4 years from different cultivation regions. These patterns of variation in ginsenoside content, which depend on harvesting location and age, could be useful for interested parties to choose ginseng products according to their needs.

Identification and quantification of major malonyl ginsenosides isolated from Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer)로부터 Malonyl ginsenoside의 분리 및 정량분석)

  • Shin, Woo Cheol;Jung, Jiyun;Na, Hyeon Seon;Bo, Jeon Hwang;Kim, Hyoung-Geun;Yoon, Dahye;Choi, Bo-Ram;Lee, Young-Seob;Kim, Geum-Soog;Baek, Nam-In;Lee, Yi;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.375-384
    • /
    • 2019
  • The root of Panax ginseng C.A. Meyer were extracted with 70% aqueous EtOH and the concentrates were partitioned into MeOH and H2O fractions using Diaion HP-20. The repeated SiO2 or octadecyl SiO2 column, and MPLC for the MeOH fraction led to isolation of four malonyl ginsenosides. The chemical structures of these compounds were determined as malonyl ginsenoside Rd (1) malonyl ginsenoside Rc (2) malonyl ginsenoside Rb2 (3) malonyl ginsenoside Rb1 (4) based on spectroscopic analyses including Nuclear magnetic resonance and HR-TOF/MS. The contents of malonyl ginsenoside Rb1 was highist as 5.44 mg/g of five years of ginseng. And malonyl ginsenoside Rd was lowest as 0.11 mg/g of six years of ginseng. Additionally, the malonyl ginsenoside Rd exhibited hepatoprotective effect against ethanol-induced hepatotoxicity in HepG2 cell line.

Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition

  • Lee, Sang Myung;Bae, Bong-Seok;Park, Hee-Weon;Ahn, Nam-Geun;Cho, Byung-Gu;Cho, Yong-Lae;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.384-391
    • /
    • 2015
  • It has been reported that Korean Red Ginseng has been manufactured for 1,123 y as described in the GoRyeoDoGyeong record. The Korean Red Ginseng manufactured by the traditional preparation method has its own chemical component characteristics. The ginsenoside content of the red ginseng is shown as Rg1: 3.3 mg/g, Re: 2.0 mg/g, Rb1: 5.8 mg/g, Rc:1.7 mg/g, Rb2: 2.3 mg/g, and Rd: 0.4 mg/g, respectively. It is known that Korean ginseng generally consists of the main root and the lateral or fine roots at a ratio of about 75:25. Therefore, the red ginseng extract is prepared by using this same ratio of the main root and lateral or fine roots and processed by the historical traditional medicine prescription. The red ginseng extract is prepared through a water extraction ($90^{\circ}C$ for 14-16 h) and concentration process (until its final concentration is 70-73 Brix at $50-60^{\circ}C$). The ginsenoside contents of the red ginseng extract are shown as Rg1: 1.3 mg/g, Re: 1.3 mg/g, Rb1: 6.4 mg/g, Rc:2.5 mg/g, Rb2: 2.3 mg/g, and Rd: 0.9 mg/g, respectively. Arginine-fructose-glucose (AFG) is a specific amino-sugar that can be produced by chemical reaction of the process when the fresh ginseng is converted to red ginseng. The content of AFG is 1.0-1.5% in red ginseng. Acidic polysaccharide, which has been known as an immune activator, is at levels of 4.5-7.5% in red ginseng. Therefore, we recommended that the chemical profiles of Korean Red Ginseng made through the defined traditional method should be well preserved and it has had its own chemical characteristics since its traditional development.