• Title/Summary/Keyword: G-Rb₁/G-Rg₁

Search Result 132, Processing Time 0.037 seconds

Variation in Content of Marker Compounds and Quality of Processed White Ginseng of Different Cultivation Ages from Different Regions (지역별, 연근별 가공백삼의 품질과 지표 성분의 변이)

  • Nam, Ki Yeul;Hwang, Gwang Bo;Lee, Dae Young;Han, Jin Soo;Noh, Hyung Jun;Kim, Dong Hwi;Kim, Geum Soog
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.408-416
    • /
    • 2018
  • Background: The ginsenosides Rb1 (G-Rb1) and Rg1 (G-Rg1) are used as marker compounds, and are the principal bioactive compounds assessed in the quality control of white ginseng. This study was conducted to analyze white ginseng samples of different and to obtain useful data for the quality control of white ginseng. Methods and Results: The variation in the content of G-Rb1 and G-Rg1 was evaluated among 35 samples of 4-, 5-, and 6-year-old white ginseng. The content of both G-Rb1 and G-Rg1 did not significantly differ among ages, and the relative ratio of the maximum to the minimum content of these within ginseng of the same ages was more than two. However, the ratio of G-Rb1 to G-Rg1 content in the 5- and 6-year-old ginseng was significantly higher than that in the 4-year-old one. According to the 'Ginseng industrial act', the standard (w/w, %) minimum $G-Rg_1$ and $G-Rb_1$ content is 0.10% and 0.20% or more, respectively. Among the 35 samples examined, the content of $G-Rg_1$ was found to be 0.124 - 0.399% with none being less than the standard level, while that of $G-Rb_1$, was 0.147 - 0.595%, with 4 samples (11.4%) failing to meet the standard levels. The content of $G-Rg_1$ and $G-Rb_1$ did not show a constant relationship with the size of ginseng. Conclusions: In our study, the content of both G-Rg1 and G-Rb1 varied widely, and there was no significant difference among cultivation ages. The results of the present study might provide useful information for the quality control of raw ginseng and processed white ginseng using marker compound.

Study on the Correlation between The Ginsenoside Contents and Growth Characteristics of Wild-simulated Ginseng with Different Year-Roots (Panax ginseng C. A. Meyer) (산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계 연구)

  • Kiyoon Kim;Hyun-Jun Kim;Yurry Um;Kwon-Seok Jeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.93-93
    • /
    • 2020
  • 본 연구는 7년, 13년근 산양삼의 생육특성과 진세노사이드(G) 함량 간의 상관관계를 구명하기 위하여 수행되었다. 6개소의 산양삼의 생육특성을 조사한 결과, 뇌두길이, 뿌리길이, 생중량, 단면적, 표면적, 부피에 있어 13년근 산양삼이 7년근 산양삼에 비하여 유의적으로 높은 것을 확인하였다. 진세노사이드11종에 대한 함량은 G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량이 13년근 산양삼이 7년근 산양삼 보다 유의적으로 높은 수치를 확인하였다. 또한 산양삼과 인삼(재배삼) 진세노사이드 함량을 비교한 결과, 13년 산양삼에서 G-Rb1, Rd, Re, Rf, Rg1이 4년, 5년근 인삼(재배삼)에 비해 유의적으로 함량이 높은 것으로 확인되었다. 산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계를 분석한 결과, G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 함량은 뇌두길이, 생중량, 단면적, 표면적, 부피와 유의정인 정의 상관관계를 보였으며, G-Rb1, Re, Rf, Rg2는 줄기직경과 부의 상관관계를 확인하였다. 본 연구는 산양삼의 7년근과 13년근을 대상으로 생육특성과 진세노사이드 함량 상관관계를 구명함으로써 연근에 따른 품질규격 정립에 유용한 정보를 제공 할 것으로 판단된다.

  • PDF

Study on the Correlation between the Ginsenoside Contents and Growth Characteristics of Wild-simulated Ginseng with Different Year-Roots (Panax ginseng C.A. Meyer) (산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계 연구)

  • Kim, Kiyoon;Um, Yurry;Eo, Hyun-Ji;Park, Hong Woo;Jeon, Kwon Seok;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.255-262
    • /
    • 2020
  • The aim of this study was to investigate the correlation between growth characteristics and ginsenoside contents of 7 and 13-year-old wild-simulated ginseng. The results of growth characteristics such as rhizome length, root length, fresh weight, cross-section area, surface area and volume were shows significantly higher in 13-year-old wild-simulated ginseng compare to 7-year-old wild-simulated ginseng. In the case of 11 ginsenoside contents, the contents of G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 and Rg2 were shows significantly higher in 13-year-old wild-simulated ginseng compare to 7-year-old wild-simulated ginseng. In addition, in the comparative analysis of ginsenoside contents between wild-simulated ginseng and cultivated ginseng, 13-year-old wild-simulated ginseng was shows significantly higher G-Rb1, Rd, Re, Rf and Rg1 ginsenoside contents compare to 4-year-old and 5-year-old cultivated ginseng. In the result of correlation analysis between growth characteristics and ginsenoside contents, the G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 ginsenoside was shows significantly positive correlation with rhizome length, fresh weight, cross-section area, surface area, volume, while as the contents of G-Rb1, Re, Rf, Rg2 was shows significantly negative correlation with shoot diameter. The results of this study was might be help to provide useful information on the establish quality standard by the investigate correlation analysis between growth characteristics and ginsenoside content of wild-simulated ginseng.

Simultaneous Analysis Method for Polar and Non-polar Ginsenosides in Cultivated Wild Ginseng by Reversed-phase HPLC-CAD (HPLC-CAD에 의한 산양삼의 극성 및 비극성 ginsenoside 동시 분석)

  • Ok, Seon;Kang, Jae Seon;Kim, Kang Min
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.247-252
    • /
    • 2016
  • Cultivated wild ginseng is a widely used dietary supplement and medicinal herb. The aim of this study was to optimize the ginseng using high performance liquid chromatography (HPLC)- charged aerosol detection (CAD) for ginsenoside analysis. CAD measures the physical property of an analyte and responds to almost all non-volatile species, independent of their nature, spectral properties, or particle size. It has become widely employed in pharmaceutical analysis. The cultivated wild ginseng extracts were analyzed for compositions of ginsenosides Rb1, Rd, Rg1, Rf, Re, and Rh1. The optimal analysis condition was set up from an experiment using a gradient. Ten grams of cultivated wild ginseng were extracted with 95% EtOH 100 ml for 24 hr at 80℃. The contents of the 6six major ginsenosides in the cultivated wild ginseng extract were Rb1 (5.48±0.12 mg/g), Rd (5.33±0.14 mg/g), Rg1 (12.80± 0.05 mg/g), Rf (19.08±0.68 mg/g), Re (19.87±0.05 mg/g), and Rh1 (16.47±0.16 mg/g), respectively. HPLC showed that the protopanaxatriol group (Rg1, Rf, Re, Rh1) had more content than the protopanaxadiol group (Rb1, Rd) in cultivated wild ginseng extract. In summary, the ginsenosides were identified with HPLC-CAD analysis, and their presence and quantity imply the importance of quality control, as well as the pharmacological activity of the ginseng root.

Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases

  • Kim, Ji Hye;Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.435-443
    • /
    • 2017
  • Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives-including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1-exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-${\kappa}B$ and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF

Quality Characteristics of Ginseng Coffee Treated by Coating of White Ginseng Extract

  • Kim, Kyung-Tack;Lee, Young-Chul;Cho, Chang-Won;Rhee, Young-Kyoung;Bae, Hye-Min
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The quality attributes of coffee treated with different concentrations of white ginseng extract were examined. Increased concentration of white ginseng extract was associated with higher color values (Hunter L. a, b scale). The crude saponin contents of untreated roasted coffee beans (control) and those coated with $5^{\circ}$ Brix (WGC-1) and $20^{\circ}$ Brix white ginseng extract (WGC-2) were 8.29%, 8.74%, and 8.93%, respectively. The total ginsenoside contents of WGC-1 and WGC-2 were 0.3 mg/g and 0.6 mg/g, respectively. In the case of major ginsenosides, the contents of ginsenosides $Rg_1,\;Rg_2,\;Rb_1,\;Rb_2,\;Rg_2,\;Rh_1$, and $Rg_3$ increased directly with the concentration of white ginseng extract. Total sugar and acidic polysaccharide contents also increased directly with the concentration of white ginseng extract. The coffee beans coated with ginseng extract scored significantly higher ginseng taste scores than the control (p<0.005) in sensory evaluation. In terms of coffee taste, WGC-2 had significantly lower scores than the commercial coffee bean. In the consumer sensory evaluation, overall preference did not differ significantly among the treatments.

Physicochemical Characteristics and Ginsenosides Compositions of Makgeolli Added with Mountain Ginsengs (장뇌삼 첨가 탁주의 이화학적 특성 및 Ginsenosides 함량)

  • Choi, Kang Hyun;Sohn, Eun-Hwa;Kim, Sung Jun;Lee, Je-Hyuk;Jang, Ki-Hyo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • Rice wine (makgeolli) containing various amounts of mountain ginsengs (MG) are being prepared with nuruk and yeasts, and the physicochemical characteristics and contents of ginsenosides in MG-makgeolli were analyzed. Average particle size of MG powder is $29.1{\mu}m$. MG slice (20 g) or powder (0~20 g) and rice (3,000 g) were used for 12 days fermentation of makgeolli, makgeolli containing slice of MG (SW-makgeolli), makgeolli containing 2 g (PW1-makgeolli), 10 g (PW2- makgeolli), 20 g (PW3-makgeolli) of powder of MG, respectively. Soluble solids and pH levels show no differences between five kinds of makgeolli groups, whilst the presence of high amounts of MG (PW3-makgeolli) caused decreases in ethanol and acidity. Major free amino acids in MG-makgeolli are glutamic acid and arginine. Total contents of 14 ginsenosides are approximately 2.5 g/100 g of dried MG powder and major ginsenoside were ginsenosides Re, Rb1, Rb2, Rg1, Rc and Rf. During the propagation of makgeolli containing MG, the ginsenosides Rb1, Rb2, Rb3, and Rc decreased, whilst ginsenosides Rg3 and compound K increased highly. It indicates that ginsenosides in MG are metabolized to different forms of ginsenosides by brewing microorganisms.

Optimization of ginseng hairy roots culture and its ginsenoside analysis

  • Ji, Joong Gu;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.995-1002
    • /
    • 2018
  • Hairy root culture of ginseng is industrially prospected because the cultivation period of ginseng is relatively long. In this study, the effect of medium concentration and sucrose concentration on hairy root culture of ginseng was evaluated. The optimization of ginseng hairy roots transformed by Agrobacterium rhizogene were performed liquid medium. The MS(Murashinge & Skoog basal medium) concentration was selected with 1/2 strength MS and the optimal sucrose concentration was determined at 2-3%(w/v). At the optimum culture condition, The yield (the ratio of weight of grown hairy root cultures to weight of fresh ginseng hairy roots) and production rate of ginseng root were 19.42 times and 5.73 g/l-day. The major ginsenosides were Rb group, Re and Rg1. The produced total ginsenoside content in the solid medium was 9.87 (mg/g) and increased 1.34 times in the liquid medium (13.23 mg/g). In solid culture, the contents of ginsenosides Rb, Re and Rg1 were 2.14, 3.65 and 1.87 mg/g, respectively. In liquid culture, the contents of ginsenosides Rb, Re and Rg1 were 3.54, 4.12 and 2.63 mg/g, respectively.

Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf (발효처리가 인삼잎의 진세노사이드 및 페놀산 조성 변화와 생리활성에 미치는 영향)

  • Lee, Ka-Soon;Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Sun-Ick;Han, Seung-Ho;Kim, Hyun-Ho;Baik, Nam-Doo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1194-1200
    • /
    • 2010
  • This study was carried out to investigate the compositional changes of ginsenosides and phenolic acids of ginseng leaf by fermentation in order to promote the utilization of ginseng leaf. The chief ginsenosides in non-fermented ginseng leaf (NFGL) were ginsenoside-Rg1 (26.0 mg/g), -Re (47.3 mg/g) and -Rd (23.9 mg/g). By fermentation, ginsenoside-Rg1, -Rb1, -Rb2, -Rb3, -Rc and -Re were decreased tremendously and new ginsenoside-Rh2, -Rh1, -Rg2 and -Rg3 appeared. Especially, ginsenoside-Rg3 (3.7 mg/g) on FGL was increased 15-fold compared to that of NFGL (0.2 mg/g). Total phenolic compound content of NFGL and FGL measured by colorimetric analysis was 350.4 and 312.5 mg%, respectively. There were 8 free and 6 ester forms of phenolic acids in NFGL. Among them, content of ferulic acid was the highest, comprised of 12.6 and 50.7 mg%, respectively. In FGL, total content of protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid were increased by 28, 5 and 7.8 fold and ferulic acid was decreased greatly. Tyrosinase inhibitory activity of FGL was stronger than NFGL, while electron donating abilities of FGL were similar to NFGL.