• Title/Summary/Keyword: G-Learning

Search Result 779, Processing Time 0.028 seconds

Developing an approach for fast estimation of range of ion in interaction with material using the Geant4 toolkit in combination with the neural network

  • Khalil Moshkbar-Bakhshayesh;Soroush Mohtashami
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4209-4214
    • /
    • 2022
  • Precise modelling of the interaction of ions with materials is important for many applications including material characterization, ion implantation in devices, thermonuclear fusion, hadron therapy, secondary particle production (e.g. neutron), etc. In this study, a new approach using the Geant4 toolkit in combination with the Bayesian regularization (BR) learning algorithm of the feed-forward neural network (FFNN) is developed to estimate the range of ions in materials accurately and quickly. The different incident ions at different energies are interacted with the target materials. The Geant4 is utilized to model the interactions and to calculate the range of the ions. Afterward, the appropriate architecture of the FFNN-BR with the relevant input features is utilized to learn the modelled ranges and to estimate the new ranges for the new cases. The notable achievements of the proposed approach are: 1- The range of ions in different materials is given as quickly as possible and the time required for estimating the ranges can be neglected (i.e. less than 0.01 s by a typical personal computer). 2- The proposed approach can generalize its ability for estimating the new untrained cases. 3- There is no need for a pre-made lookup table for the estimation of the range values.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

The Prediction Model Development for Water Supply Monitoring System based on Machine Learning (머신러닝을 고려한 상수도 모니터링 시스템 예측 모델 개발)

  • Shim, Kyu Dae;Choung, Joon Yeon;Kim, Chang Ryong;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.395-395
    • /
    • 2022
  • 본 연구는 머신러닝 기반의 상수도 모니터링 시스템의 예측 모델을 개발하고, 예측 모델의 적용이 가능성을 검토하였다. 상수도모니터링 시스템은 상수관망에 설치된 센서에서 수집된 자료를 모니터링 할 수 있어 운영자의 상수도 시설물의 관리 편의성을 높일 수 있다. 특히 수리학적 모델을 적용하여 계산된 값과 측정된 값을 비교해 이상치가 발생하면 운영자에게 이를 알려주므로 시스템내의 문제점을 빠르게 확인할 수 있다. 그러나 수리학적 모델은 입력자료가 증가됨에 따라 계산시간이 많이 소요되는 문제가 있고, 계산된 값의 정확도가 낮아지므로. 이러한 문제를 보완하기 위해 머신러닝 기반의 예측 모델을 개발하여 이를 해결하고자 하였다. 예측 모델은 GS 이니마 브라질(GS Inima Brazil)에서 운영중인 아라사투바(Aracatuba) 지역 주사라(Jussara) DMA(District Metered Area)의 2018년 1월에서 7월까지의 운영자료를 이용하였으며, 상수도 모니터링 시스템에서 상수관로 수압에 영향을 미치는 영향 인자들을 분석하고, 하이퍼파라미터 최적화를 통한 수압 예측 모델을 개선하였다. 금회 연구는 머신러닝 기반의 모델을 통하여 상수관망의 시간변화에 따른 장래 예측 수압을 검토할 수 있었다는데 큰 의의가 있다.

  • PDF

Development of a Mobile Application for Disease Prediction Using Speech Data of Korean Patients with Dysarthria (한국인 구음장애 환자의 발화 데이터 기반 질병 예측을 위한 모바일 애플리케이션 개발)

  • Changjin Ha;Taesik Go
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Communication with others plays an important role in human social interaction and information exchange in modern society. However, some individuals have difficulty in communicating due to dysarthria. Therefore, it is necessary to develop effective diagnostic techniques for early treatment of the dysarthria. In the present study, we propose a mobile device-based methodology that enables to automatically classify dysarthria type. The light-weight CNN model was trained by using the open audio dataset of Korean patients with dysarthria. The trained CNN model can successfully classify dysarthria into related subtype disease with 78.8%~96.6% accuracy. In addition, the user-friendly mobile application was also developed based on the trained CNN model. Users can easily record their voices according to the selected inspection type (e.g. word, sentence, paragraph, and semi-free speech) and evaluate the recorded voice data through their mobile device and the developed mobile application. This proposed technique would be helpful for personal management of dysarthria and decision making in clinic.

CORRECT? CORECT!: Classification of ESG Ratings with Earnings Call Transcript

  • Haein Lee;Hae Sun Jung;Heungju Park;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1090-1100
    • /
    • 2024
  • While the incorporating ESG indicator is recognized as crucial for sustainability and increased firm value, inconsistent disclosure of ESG data and vague assessment standards have been key challenges. To address these issues, this study proposes an ambiguous text-based automated ESG rating strategy. Earnings Call Transcript data were classified as E, S, or G using the Refinitiv-Sustainable Leadership Monitor's over 450 metrics. The study employed advanced natural language processing techniques such as BERT, RoBERTa, ALBERT, FinBERT, and ELECTRA models to precisely classify ESG documents. In addition, the authors computed the average predicted probabilities for each label, providing a means to identify the relative significance of different ESG factors. The results of experiments demonstrated the capability of the proposed methodology in enhancing ESG assessment criteria established by various rating agencies and highlighted that companies primarily focus on governance factors. In other words, companies were making efforts to strengthen their governance framework. In conclusion, this framework enables sustainable and responsible business by providing insight into the ESG information contained in Earnings Call Transcript data.

Prediction of karst sinkhole collapse using a decision-tree (DT) classifier

  • Boo Hyun Nam;Kyungwon Park;Yong Je Kim
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.441-453
    • /
    • 2024
  • Sinkhole subsidence and collapse is a common geohazard often formed in karst areas such as the state of Florida, United States of America. To predict the sinkhole occurrence, we need to understand the formation mechanism of sinkhole and its karst hydrogeology. For this purpose, investigating the factors affecting sinkholes is an essential and important step. The main objectives of the presenting study are (1) the development of a machine learning (ML)-based model, namely C5.0 decision tree (C5.0 DT), for the prediction of sinkhole susceptibility, which accounts for sinkhole/subsidence inventory and sinkhole contributing factors (e.g., geological/hydrogeological) and (2) the construction of a regional-scale sinkhole susceptibility map. The study area is east central Florida (ECF) where a cover-collapse type is commonly reported. The C5.0 DT algorithm was used to account for twelve (12) identified hydrogeological factors. In this study, a total of 1,113 sinkholes in ECF were identified and the dataset was then randomly divided into 70% and 30% subsets for training and testing, respectively. The performance of the sinkhole susceptibility model was evaluated using a receiver operating characteristic (ROC) curve, particularly the area under the curve (AUC). The C5.0 model showed a high prediction accuracy of 83.52%. It is concluded that a decision tree is a promising tool and classifier for spatial prediction of karst sinkholes and subsidence in the ECF area.

Critical Assessment on Performance Management Systems for Health and Fitness Club using Balanced Score Card

  • Samina Saleem;Hussain Saleem;Abida Siddiqui;Umer Sheikh;Muhammad Asim;Jamshed Butt;Ali Muhammad Aslam
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.177-185
    • /
    • 2024
  • Web science, a general discipline of learning is presently at high demand of expertise with ideas to develop software-based WebApps and MobileApps to facilitate user or customer demand e.g. shopping etc. electronically with the access at their smartphones benefitting the business enterprise as well. A worldwide-computerized reservation network is used as a single point of access for reserving airline seats, hotel rooms, rental cars, and other travel related items directly or via web-based travel agents or via online reservation sites with the advent of social-web, e-commerce, e-business, from anywhere-on-earth (AoE). This results in the accumulation of large and diverse distributed databases known as big data. This paper describes a novel intelligent web-based electronic booking framework for e-business with distributed computing and data mining support with the detail of e-business system flow for e-Booking application architecture design using the approaches for distributed computing and data mining tools support. Further, the importance of business intelligence and data analytics with issues and challenges are also discussed.

Active control of flow around a 2D square cylinder using plasma actuators (2차원 사각주 주위 유동의 플라즈마 능동제어에 대한 연구)

  • Paraskovia Kolesova;Mustafa G. Yousif;Hee-Chang Lim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.44-54
    • /
    • 2024
  • This study investigates the effectiveness of using a plasma actuator for active control of turbulent flow around a finite square cylinder. The primary objective is to analyze the impact of plasma actuators on flow separation and wake region characteristics, which are critical for reducing drag and suppressing vortex-induced vibrations. Direct Numerical Simulation (DNS) was employed to explore the flow dynamics at various operational parameters, including different actuation frequencies and voltages. The proposed methodology employs a neural network trained using the Proximal Policy Optimization (PPO) algorithm to determine optimal control policies for plasma actuators. This network is integrated with a computational fluid dynamics (CFD) solver for real-time control. Results indicate that this deep reinforcement learning (DRL)-based strategy outperforms existing methods in controlling flow, demonstrating robustness and adaptability across various flow conditions, which highlights its potential for practical applications.

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level (산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용)

  • Lee, Bora;Kim, Eunsook;Lim, Jong-Hwan;Kang, Minseok;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1117-1132
    • /
    • 2019
  • Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.