• Title/Summary/Keyword: G-Acceleration

Search Result 601, Processing Time 0.024 seconds

Estimation of Acceleration Rates of Bus and Passenger car at Signalized Intersections (신호교차로에서 버스와 승용차의 발진가속도 측정)

  • Sim, Jae-Gwi;Lee, Sang-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The maximum and mean acceleration rates of vehicles estimated from the stopping conditions at signalized intersections provided an important clue to analyze traffic accident investigation when there was a dispute about legal liability such as first entering vehicle at the intersection, etc. This paper provided the maximum and mean acceleration rates of vehicles reflecting current traffic conditions in Korea through field studies. The mean acceleration rates of vehicles at stopline were measured up to 50m at the intervals of 5m. Results showed that the mean acceleration rate for bus was found to be $1.011^m/s^2{\sim}1.314^m/s^2$(0.1g~0.13g), and for passenger car was $1.548^m/s^2{\sim}1.818^m/s^2$(0.16g~0.19g). Statistical test results indicated that the observed differences from vehicle types and vehicle positions were statistically significant for the all ranges tested. It is expected that the accuracy of accident investigation practice will be improved by applying the acceleration rate values presented in this paper.

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

Importance of convection during physical vapor transport of Hg2Cl2 in the presence of Kr under environments of high gravitational accelerations

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). With increasing the gravity acceleration from $1g_0$ up to $10g_0$, the total molar flux for ${\Delta}T$ = 30 K increases by a factor of 4, while for ${\Delta}T$ = 90, by a factor of 3. The maximum molar fluxes for three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, appear approximately in the neighborhood of y = 0.5 cm, and the molar fluxes show asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. As the gravitational level is enhanced form $1g_0$ up to $10g_0$, the intensity of convection is increased significantly through the maximum molar fluxes for ${\Delta}T$ = 30 K and 90 K. At $10g_0$, the maximum total molar flux is nearly invariant for for ${\Delta}T$ = 30 K and 90 K. The total molar flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, a noble gas called as Kr (Krypton), $P_B$. The ${{\mid}U{\mid}}_{max}$ is directly proportional to the gravity acceleration for 20 Torr $P_B{\leq}300$ Torr. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the ${{\mid}U{\mid}}_{max}s$ versus the gravity accelerations increase from 0.29 sec to 0.54 sec, i.e. by a factor of 2. The total molar flux of $Hg_2Cl_2$ is first order exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

Shaking Table Tests of A 1/5-Scale 3-Story Nonductile Reinforced Concrete Frame (1/5 축소 비연성 3층 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우;허윤섭;고동우;강귀용;김상대;정하선;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.581-586
    • /
    • 1997
  • The objective of this study is to investigate the behavior of a 1/5-scale 3-story nonductile reinforced concrete frame subjected to earthquake excitation. For this purpose, Taft N21E earthquake accelerogram was simulated by using 3m${\times}$5m shaking table. When the input acceleration is compared to that of output, it can be found that simulation of shaking table is excellent. From the results of test with Taft N21E earthquake accelerogram adjusted to peak ground acceleration(PGA) 0.06g and 0.12g(maximum acceleration in korea seismic code) the model responded in elastic behavior and it is found that the existing building in our country are safe against the levels of PGA 0.06g and 0.12g.

  • PDF

Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car (승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구)

  • 김기훈;유영면;임종순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.

Fabrication of an acceleration sensor using silicon micromachining and reactive ion etching (실리콘 마이크로머시닝과 RIE를 이용한 가속도센서의 제조)

  • Kim, Dong-Jin;Kim, Woo-Jeong;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.430-436
    • /
    • 1997
  • A piezoresistive acceleration sensor for 30 G has been fabricated by silicon micromachining method using SDB(silicon direct bonding) wafer. The structure of the piezoresistive acceleration sensor consists of a seismic square pillar type mass and four beams. This structure was fabricated by reactive ion etching and chemical etching using KOH-etchant. The rectangular square structure is used in order to compensate the deformation of the edges due to underetching. The fabricated sensor showed a linear output voltage-acceleration characteristics and its sensitivity was about $88{\mu}V/V{\cdot}g$ from 0 to 10 G.

  • PDF

Vibration Measurement and Analysis During Fruits Distribution for Optimum Packaging Design (적정 포장설계를 위한 과실의 유통 중 진동의 계측 및 분석)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • The freight vehicle is mostly used to transport the fruit. Shock and impact generated by the freight vehicle may give serious damage to fruits hence to reduce the fruits damage, the optimum packaging design during transportation by vehicle is required. In order to design the packaging system for fruit transportation optimally, the comprehension of characteristic for vibration and shock acting on vehicles under various road conditions and loading methods is required. This research was performed to analyze the shock characteristics, acceleration level and power spectral density (PSD) of the fruit transportation vehicles under several travel roads and positions. The vibration signal was measured and analyzed at the transportation vehicle operating on the road of three different surface conditions. The maximum acceleration was measured at the rear-end of the vehicle, and the acceleration in the direction of up-and-down (z-axis) was much greater than those in the directions of back-and-forth (x-axis) or right-and-left (y-axis). The peak acceleration in the direction of up-and-down (z-axis) at the vehicle driving on the expressway, the local road paved with concrete, and unpaved local road were 5.3621 G, 8.232 G, and 14.162 G respectively. PSD at 2.44 Hz showed maximum value at all road conditions. The maximum values of PSD on the expressway, a local road paved with concrete, and unpaved local road were 0.0075222 $G^2/Hz$, 0.058655 $G^2/Hz$, and 0.24598 $G^2/Hz$ respectively. The value of PSD decreased with an increase of the vibration frequency of the transportation vehicle. In most cases, the vibration frequency was below 20 Hz during transportation.

Development of Highway Safety Evaluation Considering Design Consistency using Acceleration (가속도를 고려한 도로의 설계일관성 평가기법에 관한 연구)

  • 하태준;박제진;김유철
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2003
  • Road safety is defined under the minimum design standard and design examination process is consisted of the standard according to current road design. However, road safety in practical way is correlative to not only all element of roads but also road shape, such as, between straight line and curved line and between curved lines. Also. it is related to alignments such as horizontal alignment and vertical alignment, and cross section. That is, the practical road design should be examined in both sides of 3 dimension and consecutiveness (consistency) as the actual road is a 3 - dimensional successive object. The paper presents a concept for acceleration to evaluate consistency of road considering actual road shape on 3-dimension. Acceleration of vehicle is influential to road consistency based on running state of vehicles and state of drivers. The magnitude of acceleration. especially, is a quite influential element to drivers. Based on above, the acceleration on each point on 3-D road can be calculated and then displacement can be done. Computation of acceleration means total calculation on each axis. Speed profile refers to “Development of a safety evaluation model for highway horizontal alignment based on running speed(Jeong, Jun-Hwa, 2001)” and then acceleration can be calculated by using the speed pronto. According to literature review, definition of acceleration on 3-D and g-g-g diagram are established. For example, as a result of the evaluation, if the acceleration is out of range, the road is out of consistency. The paper shows calculation for change of acceleration on imaginary road under minimum design standard and the change tried to be applied to consistency. However accurate acceleration is not shown because the speed forecasting model is limited and the paper did not consider state of vehicles (suspension, tires and model of vehicles). If speed pronto is defined exactly, acceleration is calculated on all road shapes, such as. compound curve and clothoid curve. and then it is appled to consistency evaluation. Unfortunately, speed forecasting model on 3 -D road and on compound curves have rarely presented. Speed forecasting model and speed profile model need to be established and standard of consistency evaluation need to developed and verified by experimental vehicles.

Theoretical gravity studies on roles of convection in crystal growth of $Hg_2Cl_2$-Xe by physical vapor transport under normal and high gravity environments

  • Kim, Geug-Tae;Kwon, Moo-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • Particular interest in the role of convection in vapor crystal growth has arisen since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). For both ${\Delta}T=60\;K$ and 90 K, the mass flux increases by a factor of 3 with increasing the gravity acceleration from $1g_0$ up to $10g_0$. On the other hand, for ${\Delta}T=30\;K$, the flux is increased by a factor of 1.36 for the range of $1g_0{\leq}g{\leq}10g_0$. The maximum growth rates for $1g_0$, $4g_0$, $10g_0$ appear approximately in the neighborhood of y = 0.5, and the growth rates shows asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. The maximum growth rate for $10g_0$ is nearly greater than that for $1g_0$ by a factor of 2.0 at $P_B=20\;Torr$. For three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, the maximum growth rates are greater than the minimum rates by a factor of nearly 3.0, based on $P_B=20\;Torr$. The mass flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, xenon (Xe), $P_B$. The $|U|_{max}$ is directly proportional to the gravity acceleration for $20\;Torr{\leq}P_B{\leq}300\;Torr$. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the $|U|_{max}s$ versus the gravity accelerations increase from 0.1 sec to 0.17 sec. The mass flux of $Hg_2Cl_2$ is exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

Study on flexure angle measurement of ring laser gryo and the improvement of flexure error (링레이저 자이로의 플렉셔 각도측정과 플렉셔 오차개선 연구)

  • 조민식;김광진;김정주
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Flexure measurement of ring laser gyro was investigated by using an interferometer. A two-beam interferometer of Fiezo-fringe pattern obtained the flexure angle in 1-gravity acceleration and the higher acceleration environments. These environments were made with the addition of dummy mass to the ring laser gyro axis. The flexure angle change for 1-gravity acceleration change was measured as 2.37 arcsec/g with low repeatability error of 0.01 arcsec/g. The laser navigation system consisting of 3 flexure-reduced ring laser gyros showed the improvement of flexure error.