• Title/Summary/Keyword: Fuzzy-study-rule

Search Result 230, Processing Time 0.025 seconds

The Design of Adaptive Fuzzy Polynomial Neural Networks Architectures Based on Fuzzy Neural Networks and Self-Organizing Networks (퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계)

  • Park, Byeong-Jun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design (퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계)

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.236-244
    • /
    • 2005
  • In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

A Study on the Implementation of an optimized Algorithm for association rule mining system using Fuzzy Utility (Fuzzy Utility를 활용한 연관규칙 마이닝 시스템을 위한 알고리즘의 구현에 관한 연구)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • In frequent pattern mining, the uncertainty of each item is accompanied by a loss of information. AAlso, in real environment, the importance of patterns changes with time, so fuzzy logic must be applied to meet these requirements and the dynamic characteristics of the importance of patterns should be considered. In this paper, we propose a fuzzy utility mining technique for extracting frequent web page sets from web log databases through fuzzy utility-based web page set mining. Here, the downward closure characteristic of the fuzzy set is applied to remove a large space by the minimum fuzzy utility threshold (MFUT)and the user-defined percentile(UDP). Extensive performance analyses show that our algorithm is very efficient and scalable for Fuzzy Utility Mining using dynamic weights.

Genetic Optimization of Fuzzy C-Means Clustering-Based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.466-472
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based fuzzy neural networks (FCM-FNN) and the optimization of the network is carried out by means of hierarchal fair competition-based parallel genetic algorithm (HFCPGA). FCM-FNN is the extended architecture of Radial Basis Function Neural Network (RBFNN). FCM algorithm is used to determine centers and widths of RBFs. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM-FNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Since the performance of FCM-FNN is affected by some parameters of FCM-FNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the HFCPGA which is a kind of multipopulation-based parallel genetic algorithms(PGA) is exploited to carry out the structural optimization of FCM-FNN. Moreover the HFCPGA is taken into consideration to avoid a premature convergence related to the optimization problems. The proposed model is demonstrated with the use of two representative numerical examples.

Ship s Maneuvering and Winch Control System with Voice Instruction Based Learning (음성지시에 의한 선박 조종 및 윈치 제어 시스템)

  • Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2002
  • In this paper, we propose system that apply VIBL method to add speech recognition to LIBL method based on human s studying method to use natural language to steering system of ship, MERCS and winch appliances and use VIBL method to alternate process that linguistic instruction such as officer s steering instruction is achieved via ableman and control steering gear, MERCS and winch appliances. By specific method of study, ableman s suitable steering manufacturing model embodies intelligent steering gear controlling system that embody and language direction base studying method to present proper meaning element and evaluation rule to steering system of ship apply and respond more efficiently on voice instruction of commander using fuzzy inference rule. Also we embody system that recognize voice direction of commander and control MERCS and winch appliances. We embodied steering manufacturing model based on ableman s experience and presented rudder angle for intelligent steering system, compass bearing arrival time, evaluation rule to propose meaning element of stationary state and correct steerman manufacturing model rule using technique to recognize voice instruction of commander and change to text and fuzzy inference. Also we apply VIBL method to speech recognition ship control simulator and confirmed the effectiveness.

Neuro-Fuzzy modeling of torsional strength of RC beams

  • Cevik, A.;Arslan, M.H.;Saracoglu, R.
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.469-486
    • /
    • 2012
  • This paper presents Neuro-Fuzzy (NF) based empirical modelling of torsional strength of RC beams for the first time in literature. The proposed model is based on fuzzy rules. The experimental database used for NF modelling is collected from the literature consisting of 76 RC beam tests. The input variables in the developed rule based on NF model are cross-sectional area of beams, dimensions of closed stirrups, spacing of stirrups, cross-sectional area of one-leg of closed stirrup, yield strength of stirrup and longitudinal reinforcement, steel ratio of stirrups, steel ratio of longitudinal reinforcement and concrete compressive strength. According to the selected variables, the formulated NFs were trained by using 60 of the 76 sample beams. Then, the method was tested with the other 16 sample beams. The accuracy rates were found to be about 96% for total set. The performance of accuracy of proposed NF model is furthermore compared with existing design codes by using the same database and found to be by far more accurate. The use of NF provided an alternative way for estimating the torsional strength of RC beams. The outcomes of this study are quite satisfactory which may serve NF approach to be widely used in further applications in the field of reinforced concrete structures.

A Study on Learning Evaluation Method by Using Fuzzy Theory (퍼지이론을 이용한 학습 평가 방법에 관한 연구)

  • 정창욱;남재현;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.853-862
    • /
    • 2003
  • With the data base subject of first grade paper test of information handling technician, We proposed special method of evaluating learning ability directivity to judge that student can understand the contents of each chapter exactly or not, using assigned function and fuzzy deduction in this thesis. Using fuzzy logic, the proposed method of evaluating learning ability is dividing the presenting frequency of setting questions for examination about the subject of database into three rank and we can define this as the important. We applied the fuzzy assigned rate about the number of times of studying through the important of studying and the fuzzy assigned rate about formative evaluation to each of nine fuzzy deduction theories and than evaluated comprehension rate of learning. With the fuzzy grade about learning comprehension of each chapter and assigned rate about the score of generalized evaluation; We applied these two thing to the deduction rule of fuzzy and made it as defuzzifier and finally evaluated learning. We made that the result of eventual evaluating learning is very useful for learners to diagnosis learned contents by themselves and also it can be great material to judge that learners can get the goal of learning or not synthetically.

A Study on Phase Velocity Correction of Motorized Wheelchair Based un Fuzzy Control (퍼지제어에 의한 전동 휠 체어의 경로속도 보정에 관한 연구)

  • Lee, Chang-Hun;Mun, Cheol-Hong;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.331-338
    • /
    • 1992
  • In this study, Fuzzy control algorithm to generate a change of rocomotion condition according to an outer environment is introduced on a motorized wheelchair control. An optimal control rule for conquesting the less of safety and system Inefficiency in the past are given to this motorized wheelchair. And dynamic analysis Is also adopted to it. Using those rules, a proportional control was possible when the vehicle changed Its moving direction. The proposed method which considers the relationship between a moving velocity and the command from the joystick shows better performance in the change of moving direction.

  • PDF

A Study on the Development of Purchasing Decision Model by Image of Product - Focused on Notebook industry - (제품 이미지에 따른 구매결정모형의 개발에 관한 연구 - 노트북 산업을 중심으로 -)

  • Park Sang-June;Cho Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • As many organizations are searching for ways to compete more effectively in today's market environment. Image of Product is become the most important fact to improve their competition. The objectives of this paper are to provide an overview of PDM(Purchasing Decision Factor) and to discuss how to measure it more efficiently. This study develops a conceptual 'relation model of the purchasing decision factor', which identifies only performance based measurement, and proposes Fuzzy Measuring Method which uses the Fuzzy rule based algorithm to adept survey to date sets.

  • PDF

Automatic Control for Ship Automatic Collision Avoidance Support (선박자동충돌회피지원을 위한 자동제어)

  • 임남균
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.81-86
    • /
    • 2003
  • The studies on automatic ship collision avoidance system, which have been carried out last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation 3-4 years ago because of the absence of the tool to get other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the algorithm of automatic ship collision support system. The NOMOTO ship's mathematic model is adopted in simulation for its simplicity. The fuzzy reason rules are used for course-keeping system and for the calculation of Collision Risk using TCPA/DCPA. Moreover‘encounter type’ between two ships is analyzed based on Regulations for Preventing Collisions at Sea and collision avoidance action is suggested, Some situations are simulated to verity the developed algorithm and appropriate avoidance action is shown in the simulation.

  • PDF