• 제목/요약/키워드: Fuzzy-model-based Kalman filter

검색결과 23건 처리시간 0.018초

고속도로 통행료 수납자료의 특성을 반영한 통행시간 예측 모형 설계 (Design of Travel Time Forecasting Model Based on TCS Data Characteristics)

  • 김동근;최진우;김태민;박진웅;김효민;양영규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1595-1597
    • /
    • 2011
  • 과거에는 고속도로 상에 일정간격으로 설치하여 운영 중인 VDS(Vehicle Detection System)에서 주기적으로 검지되는 지점자료나 실제로 도로를 주행하면서 교통상황을 측정하는 프로브 차량(Probe Vehicle)들을 이용하여 통행시간을 추정해 왔으나 단순한 현시점에서의 통행시간을 나타내는 점이나 설치구간이 조밀하지 못한 곳에서의 정확성 등 많은 문제점이 있어왔다. 이에 본 연구에서는 고속도로 통행료 수납자료(Toll Collection System)를 출발시각 기준으로 정렬하고, 이를 Fuzzy c-means 클러스터링 기법을 사용하여 고속도로 통행료 수납자료의 특성에 따라 분류한 후 하나의 대푯값으로 추출하여 Kalman Filter 기법에 적용하는 고속도로 통행시간 예측 모형을 설계한다.

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.