• Title/Summary/Keyword: Fuzzy-based algorithm

Search Result 1,626, Processing Time 0.044 seconds

A Fuzzy Model Based on the PNN Structure

  • Sang, Rok-Soo;Oh, Sung-Kwun;Ahn, Tae-Chon;Hur, Kul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.83-86
    • /
    • 1998
  • In this paper, a fuzzy model based on the Polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. the new algorithm uses PNN algorithm based on Group Mehtod of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

The implementation of the Multi-population Genetic Algorithm using Fuzzy Logic Controller

  • Chun, Hyang-Shin;Kwon, Key-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.80-83
    • /
    • 2003
  • A Genetic algorithm is a searching algorithm that based on the law of the survival of the fittest. Multi-population Genetic Algorithms are a modified form of genetic algorithm. Therefore, experience with fuzzy logic and genetic algorithm has proven to be that a combination of them can efficiently make up for their own deficiency. The Multi-population Genetic Algorithms independently evolve subpopulations. In this paper, we suggest a new coding method that independently evolves subpopulations using the fuzzy logic controller. The fuzzy logic controller has applied two fuzzy logic controllers that are implemented to adaptively adjust the crossover rate and mutation rate during the optimization process. The migration scheme in the multi-population genetic algorithms using fuzzy logic controllers is tested for a function optimization problem, and compared with other group migration schemes, therefore the groups migration scheme is then performed. The results demonstrate that the migration scheme in the multi-population genetic algorithms using fuzzy logic controller has a much better performance.

  • PDF

Design of a Fuzzy Controller Using Genetic Algorithms Employing Random Signal-Based Learning (랜덤 신호 기반 학습의 유전 알고리즘을 이용한 퍼지 제어기의 설계)

  • Han, Chang-Uk;Park, Jeong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.131-137
    • /
    • 2001
  • Traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on only particular domian. Hybridizing a genetic algorithm with other algorithms can produce better performance than both the genetic algorithm and the other algorithms. This paper describes the application of random signal-based learning to a genetic algorithm in order to get well tuned fuzzy rules. The key of tis approach is to adjust both the width and the center of membership functions so that the tuned rule-based fuzzy controller can generate the desired performance. The effectiveness of the proposed algorithm is verified by computer simulation.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Design of Fuzzy Relation-based Fuzzy Neural Networks with Multi-Output and Its Optimization (다중 출력을 가지는 퍼지 관계 기반 퍼지뉴럴네트워크 설계 및 최적화)

  • Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.832-839
    • /
    • 2009
  • In this paper, we introduce an design of fuzzy relation-based fuzzy neural networks with multi-output. Fuzzy relation-based fuzzy neural networks comprise the network structure generated by dividing the entire input space. The premise part of the fuzzy rules of the network reflects the relation of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions such as constant, linear, and modified quadratic. For the multi-output structure the neurons in the output layer were connected with connection weights. The learning of fuzzy neural networks is realized by adjusting connections of the neurons both in the consequent part of the fuzzy rules and in the output layer, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, learning rate and momentum coefficient are automatically optimized by using real-coded genetic algorithm. Two examples are included to evaluate the performance of the proposed network.

An Approach to Combining Classifier with MIMO Fuzzy Model

  • Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.182-185
    • /
    • 2003
  • This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.

  • PDF

Indirect Adaptive Regulator Design Based on TSK Fuzzy Models

  • Park Chang-Woo;Choi Jun-Hyuk;Sung Ha-Gyeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, we have proposed a new adaptive fuzzy control algorithm based on Takagi-Sugeno fuzzy model. The regulation problem for the uncertain SISO nonlinear system is solved by the proposed algorithm. Using the advanced stability theory, the stability of the state, the control gain and the parameter approximation error is proved. Unlike the existing feedback linearization based methods, the proposed algorithm can guarantee the global stability in the presence of the singularity in the inverse dynamics of the plant. The performance of the proposed algorithm is demonstrated through the problem of balancing and swing-up of an inverted pendulum on a cart.

Tuning Fuzzy Rules Based on Additive-Type Fuzzy System Models

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.387-390
    • /
    • 1998
  • In this paper, we suggested a neuro-fuzzy learning algorithm for tuning fuzzy rules, in which a fuzzy system model is of additive-type. Using the method, it is possible to reduce the computation size, since performing the fuzzy inference and tuning the fuzzy rules of each fuzzy subsystem model are independent. Moreover, the efficiency of suggested method is shown by means of a numerical example.

  • PDF

Design of fuzzy logic controller using genetic algorithms for the flexible manipulator (Flexible manipulator를 위한 유전 알고리즘을 이용한 퍼지 제어기 설계)

  • 허남건;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1808-1811
    • /
    • 1997
  • A position control algorithm for a flexible manipulato is stuudied. The proposed algorithm is based on a fuzzy theroy with a Steady State Genetic Algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is one of the optimization algorithms, tunes automatically the input-output membership parameters and fuzzy rules. The computer simulation is presented ot illustrate the approaches. Finally we applied a fuzzy theory with a SSGA to aposition control of a flexible manipulator.

  • PDF