• Title/Summary/Keyword: Fuzzy-PID Controller

Search Result 401, Processing Time 0.057 seconds

Non-linear Control of Turbojet Engine for High Maneuverability UAV (고기동 무인항공기용 터보제트엔진의 비선형 제어)

  • Han, Dong-Ju;Oh, Seong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.431-438
    • /
    • 2012
  • Non-linear turbojet engine controller with high operational performance has been designed for the high maneuverability UAV. The turbojet engine dynamic performance code has been developed to reflect the non-linear characteristics on controller design, by which the necessity of non-linear controller design was justified by investigating the limitation of linear model derived from the dynamic performance. The PI-like fuzzy controller was designed and enhanced by combining with conventional derivative control. This designed fuzzy controller proves its effectiveness by showing superior control performances over the conventional PID controller along with guaranteeing the safe operation within compressor surge, flame out and turbine temperature limits etc.

Water Level Intelligent Controller Design of Power Plant Drum (발전기 드럼의 수위 지능 제어기 설계)

  • Hong, Hyun-Mun;Jeon, B.S.;Kim, J.G.;Kang, G.B.;Lee, B.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.415-417
    • /
    • 2005
  • In this paper, we propose a intelligent controller design method for the water level control of the power plant drum in the form of nonminimum phase system. The proposed method is based on T. Takagi and M. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design method

  • PDF

Application of Fuzzy-PID Controller Based on Genetic Algorithm for Speed Control of Induction Motors

  • Yangwon Kwon;Park, Jongkyu;Haksoo Kang;Taechon Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.309-312
    • /
    • 1999
  • This paper proposed a novel method for pseudo-on-line scheme using look-up table based on the genetic algorithm The technique is an pseudo-on-line method that optimally estimate the parameters of FPID controller for systems with non-linearity using the genetic algorithm which does not use the gradient and finds the global optimum of an unconstraint optimization problem. The proposed controller is applied to speed control of 3-phase induction motor and its computer simulation is carried out. Simulation results show that the proposed method is more excellent then conventional FPID and PID controllers.

  • PDF

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

Automatic Design of Fuzzy Controller Using Clustering and Genetic Algorithm (클러스터링과 GA를 이용한 퍼지 제어기 설계 자동화)

  • Yoon, Yong-Seock;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2953-2955
    • /
    • 2000
  • 본 논문에서는 전문가의 지식이 없는 상황에서 자동적으로 최적의 퍼지 제어기를 설계하는 방법에 대해 연구한다. 먼저 퍼지 제어기의 규칙 설정을 위해 기존의 PID 제어기의 입출력 데이터를 클러스터링한다. 군집된 데이터들로부터 클러스터의 수를 파악하고 이를 바탕으로 퍼지 제어를 위한 규칙의 수를 결정한다. 둘째로 퍼지 제어기의 여러 파라미터들은 유전자 알고리즘을 적용하여 최적화한다. GA를 이용한 최적화 과정에서는 성능평가 기준으로 기준입력에 대한 시스템 응답간의 오차와 오버슈트의 크기를 사용하여 응답이 빠르고 안정적인 제어기를 설계하도록 진화방향을 설정한다. 이렇게 만들어진 퍼지 제어기의 성능을 기존의 PID 제어기와 비교 평가한다

  • PDF

Design of fuzzy speed/phase controller for drum motor in home VCR (VCR용 드럼 모터의 퍼지 속도/위상 제어기 설계)

  • 박귀태;이기상;박태홍;배상욱;이상락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.457-462
    • /
    • 1991
  • Recently, digital techniques have been applied to servo systems of the home VCR, which result in high accuracy, high stability and a small number of parts required. The servo systems are now becoming more compex because the latest home VCRs are stringly required to have many functions. Given these circumstances, software servo concepts were introduced to the VCR servo system with microprocessor. But there are some difficulties in the conventional digital PID controller, eg. caculating the exact gains or dynamics. In this paper, we introduce FLC(Fuzzy Logic Controller) to the speed/phase control for VCR drum motor. To show the usefulness of the proposed controller, some studies are discussed by simulation and experiment.

  • PDF

Implementation of Fuzzy Controller for MFC (MFC의 퍼지제어기 구현)

  • Lee, Seok-Ki;Lee, Yun-Jung;Lee, Seung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.648-654
    • /
    • 2004
  • The Mass Flow Controller(MFC) has become crucial in semiconductor manufacturing equipments. It is an important element because the quality and the yield of a semiconductor process are decided by the accurate flow control of gas. Therefore, the demand for implementing the high speed and the highly accurate control of MFCs has been increasing. It is hard to find an article of the control algorithm applied to MFCs. But, it is known that commercially available MFCs adopt PID control algorithms. Particularly, when the system detects the flow by way of heat transfer, the MFC control problem includes the slow response and the nonlinearity. In this paper, MFC control algorithm with a superior performance to the conventional PID algorithm is discussed and the superiority is demonstrated through the experiment. A fuzzy controller was utilized in order to compensate the nonlinearity and the slow response, and the performance is compared with that of an MFC currently available in the market. The control system, in this paper, consists of a personal computer, the data acquisition board and the control algorithm carried out by LabWindows/CVI program on the PC. In addition, a method of estimating the actual flow from the sensor output with the slow response is presented. In conclusion, according to the result of the experiment, the proposed algorithm shows better accuracy and is faster than the conventional controller.

A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process (단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구)

  • Kim, Min-Seong;Choi, Min-Hyuk;Bae, Ho-Young;Im, Oh-Deuk;Kang, Jung-Suk;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.

Fuzzy Control of DC Servo System and Implemented Logic Circuits of Fuzzy Inference Engine Using Decomposition of $\alpha$-level Fuzzy Set (직류 서보계의 퍼지제어와 $\alpha$-레벨 퍼지집합 분해에 의한 퍼지추론 연산회로 구현)

  • 홍정표;홍순일;이요섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.793-800
    • /
    • 2004
  • The purpose of this study is to develope a servo system with faster and more accurate response. This paper describes a method of approximate reasoning for fuzzy control of servo system based on the decomposition of $\alpha$-level fuzzy sets. We propose that fuzzy logic algorithm is a body from fuzzy inference to defuzzificaion cases where the output variable u directly is generated PWM The effectiveness for robust and faster response of the fuzzy control scheme are verified for a variable parameter by comparison with a PID control and fuzzy control A position control of DC servo system with a fuzzy logic controller is demonstrated successfully.

Development Of Active Vibration Isolation System Using Fuzzy Method (퍼지 방법을 이용한 능동 방진 시스템의 개발)

  • Yang, Xun;An, Chae-Hun;Jin, Kyoung-Bog;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.731-736
    • /
    • 2007
  • Vibration isolation equipments are mostly required in precise measurement and manufacturing system. Among all the vibration isolation system, air-spring is the most widely used equipment because of low resonant frequency and high damping ratio. In this study, Takagi-Sugeno fuzzy method is used to design an active vibration isolation system using air-spring, and compared the fuzzy method with passive control method and PID control method. Due to the non-linearity characteristics of air-spring, fuzzy controller was verified to be the most effective both in simulation and experiment.

  • PDF