• Title/Summary/Keyword: Fuzzy-PID

Search Result 468, Processing Time 0.025 seconds

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Design of a PID type Fuzzy Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.189-193
    • /
    • 1998
  • A PID type fuzzy Controller is proposed based on a crisp type model in which the consequent parts of the fuzzy control rules are functional representation or real numbers. Using the conventional PID control theory, a new PID type fuzzy controller is developed, which retains the characteristics of the conventional PID controller. An advantage of this approach, is that it simplifies the complicated defuzzification algorithm which could be time consuming. Computer simulation results have shown that the proposed PID fuzzy controller has satisfactory tracking performance.

  • PDF

Performance Improvement of the Nonlinear Fuzzy PID Controller

  • Kim, Jong Hwa;Lim, Jae Kwon;Joo, Ha Na
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.927-934
    • /
    • 2012
  • This paper suggests a new fuzzy PID controller with variable parameters which improves the shortage of the fuzzy PID controller with fixed parameters suggested in [9]. The derivation procedure follows the general design procedure of the fuzzy logic controller, while the resultant control law is the form of the conventional PID controller. Therefore, the suggested controller has two advantages. One is that it has only four fuzzy linguistic rules and analytical form of control laws so that the real-time control system can be implemented based on low-price microprocessors. The other is that the PID control action can always be achieved with time-varying PID controller gains only by adjusting the input and output scalers at each sampling time.

Temperature control of the Rework-system using fuzzy PID controller (퍼지 PID 제어기에 의한 리워크 시스템의 온도제어)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6289-6295
    • /
    • 2014
  • Rework systems are the equipment used to install or remove semiconductor chips with BGA or SMD forms in printed circuit boards. The rework systems have hot air outlets. At the outlets, precise temperature control is needed to avoid heat shock. The aim of this paper was to suggest a new controller for temperature control at the hot air outlets. The suggested controller was a fuzzy PID controller. The fuzzy PID controllers were composed of TSK fuzzy rules and had outstanding ability for nonlinear systems control. This paper reports the design algorithm of fuzzy PID controllers, and the design process of the fuzzy PID controller for the temperature control of the outlets. Temperature control experiments were performed to verify the ability of the suggested controller. As a result, the RMS of the proposed method is 9.44 and the general method is 15.88. The experiments showed that the temperatures at the outlet using the suggested fuzzy PID controller followed the desired ones better than the commonly used PID controller.

A Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm (유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계)

  • Chung, Mun-Kyu;Wang, Yong-Peel;Lee, Jeong-Phil;Chung, Hyeng-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.153-156
    • /
    • 1999
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor membership function and control rules.

  • PDF

Derivation of a Linear PID Control Law from a Fuzzy Control Theory (퍼지 제어기로부터 PID 제어기의 구현에 관한 연구)

  • 최병재;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.70-78
    • /
    • 1997
  • Proportional-integral-derivative(P1D) controllers have been still widely used in industrial processes due to their simplicity, effectiveness, robustness for a wide range of operating conditions, and the familiarity of control engineers. And a number of recent papers in fuzzy systems are showing that fuzzy systems are universal approximators. That is, fuzzy controllers are capable of approximating any real continuous function on a compact set of arbitrary accuracy. In this paper, we derive the linear PID control law from the fuzzy control algorithm where all fuzzy sets for representing plant state variables and a control variable use common triangular types. We first lead a linear PD control law from a fuzzy logic control with only two fuzzy sets for error and change-of-error. And then we derive the linear PID control law from a fuzzy controller. We here assumed that the intervals of error, change-of-error, and integral error could be partitioned into arbitrary numbers, respectively. As a result, a linear PID controller is only a sort of various fuzzy logic controls.

  • PDF

The Design of Fuzzy P+ID Controller for Brushless DC Motor Speed Control (BLDC 전동기의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Kim, Sung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.823-829
    • /
    • 2006
  • In this paper presents approaches to the design of a hybrid fuzzy logic proportional plus conventional integral- derivative(fuzzy P+ID) controller in an incremental form. This controller is constructed by using an incremental fuzzy logic controller in place of the proportional term in a conventional PID controller. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

The Study on IM Drive using a Auto-Tuning Fuzzy PID Control Algorithm (자동동조(自動同調) 퍼지 앨고리즘을 사용한 유도전동기(誘導電動機) 구동(驅動)에 관한 연구(硏究))

  • Yoon, Byung-Do;Kim, Yoon-Ho;Jung, Jae-Ruon;Kim, Chun-Sam;Chae, Su-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1242-1244
    • /
    • 1992
  • This Paper deals with a Auto-Tuning Fuzzy PID Controller used in real time and its application for induction motor. The control strategy of the controller is able to develop and improve automatically. The new Auto-Tuning Fuzzy PID Control algorithm which modifies the fuzzy control decision table is presented in this paper. It can automatically refine an initial approximate set of fuzzy rules. The possibility of applying fuzzy algorithms in faster response, and more accurate was compared with other industrial processes, such as AC Motor driver. The performance of Proportional_Integral Derivative(PID) control and this fuzzy controllers is compared in terms of steady_state error, settling time, and response time. And then, Limitations of fuzzy control algorithms are also described.

  • PDF

On the Auto Tuning of Fuzzy PID Controller

  • Kim, Yoon-Sang;Oh, Hyun-Cheol;Ahn, Doo-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.57-62
    • /
    • 1998
  • This paper presents an auto tuning method of PID controller based on the application of fuzzy logic. The proposed method combined the principles of PID control with fuzzy control, which cam considerably improve the performance index of PID controller. Simulation results show that higher performance and accuracy of overall system for desired value is achieved with our manner when compared to widely-used conventional tuning method.

  • PDF