• 제목/요약/키워드: Fuzzy-Neural network

검색결과 1,208건 처리시간 0.026초

지능형 스폿 용접기 개발에 관한 연구 (Study On development of Intelligent spot weld machine)

  • 이희준;이세헌
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.20-20
    • /
    • 2009
  • 저항 점 용접은 1930년대에 Thomson에 의해 방법이 제안된 이후로 자동차, 전자, 항공기, 철도산업등에서 박판 금속(sheet metal)의 접합에 가장 널리 사용되고 있는 공정이다. 특히 자동차 차체와 같이 대부분 박판으로 구성되는 구조물에서는 저항 점 용접의 사용 범위가 매우 넓기 때문에 자동차 산업에서는 가장 기본적인 근본 기술 중의 하나로 인식되고 있다. 보통 자동차 한대를 생산하는데 소요되는 저항 점 용접 타점은 3000~4000개 정도로 자동차 차체 용접 공정의 대부분을 차지하고 있다. 또한 로봇과 연동된 자동화 공정으로 적용되고 있다. 최근의 자동차 차체를 구성하는 금속 재료가 자동차의 경량화, 친화경 소재의 사용자의 요구로 인해 새로운 강판이 사용된다. 자동차의 연비 향상을 위해서 다른 방법보다 자동차의 무게를 감소시키는 것이 가장 효율적이고, 쉽기 때문에 고장력 강판의 사용이 급속하게 증가하고 있다. 뿐만 아니라 차제의 부식성, 내마모성 향상을 위해 도금 처리된 강판의 사용도 활발하게 이루어지고 있다. 최근에 도장 공정 감소를 위해 도금 처리위에 도료 착색을 용이하게 하는 도료의 일부를 금속 표면에 처리된 강판의 개발도 진행되는 등 금속 소재의 변화가 다양하게 진행되고 있다. 이러한 새로운 강종은 기존의 AC 용접이나 DC 용접으로는 용접성 확보에 어려움을 가지고 있어, 새로운 저항 점 용접 공정의 연구 개발이 필요하다. 본 연구에서는 저항 점 용접 공정의 개선을 위해서 인버터 저항 점 용접기에서 용접 공정 중 전류를 제어하기 위한 효율적인 제어기 개발 방법과 개발된 제어기를 바탕으로 용접 중에 용접부의 품질을 예측하여, 용접 전류 및 가압력을 실시간 제어하여 안정적인 용접부의 품질을 갖질 수 있는 지능형 저항 점 용접기의 적응 제어기를 개발하는데 있다.

  • PDF

단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가 (Development of Water Demand Forecasting Simulator and Performance Evaluation)

  • 신강욱;김주환;양재린;홍성택
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

대규모 가스 센서 어레이에서 중복도의 제거와 확률신경회로망을 이용한 분류 (The Classification Using Probabilistic Neural Network and Redundancy Reduction on Very Large Scaled Chemical Gas Sensor Array)

  • 김정도;임승주;박성대;변형기;;김정주
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.162-173
    • /
    • 2013
  • The purpose of this paper is to classify VOC gases by emulating the characteristics found in biological olfaction. For this purpose, we propose new signal processing method based a polymeric chemical sensor array consisting of 4096 sensors which is created by NEUROCHEM project. To remove unstable sensors generated in the manufacturing process of very large scaled chemical sensor array, we used discrete wavelet transformation and cosine similarity. And, to remove the supernumerary redundancy, we proposed the method of selecting candidates of representative sensor representing sensors with similar features by Fuzzy c-means algorithm. In addition, we proposed an improved algorithm for selecting representative sensors among candidates of representative sensors to better enhance classification ability. However, Classification for very large scaled sensor array has a great deal of time in process of learning because many sensors are used for learning though a redundancy is removed. Throughout experimental trials for classification, we confirmed the proposed method have an outstanding classification ability, at transient state as well as steady state.

다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of SynRM Drive using Multi-AFLC)

  • 최정식;고재섭;장미금;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.44-54
    • /
    • 2010
  • SynRM 효율최적화 제어는 다른 교류전동기에 비해 SynRM의 효율이 낮기 때문에 에너지 절약과 환경보존의 관점에서 매우 중요하다. 본 논문에서는 다중 AFLC를 이용하여 철손을 고려한 SynRM의 새로운 효율 최적화 제어를 제안하였다. 최대효율에서 SynRM을 구동하기 위해 토크전류와 여자전류사이의 최적전류비를 분석하여 구한다. 본 논문에서는 동손과 철손을 최소로 하는 SynRM의 효율 최적화 제어를 제안하였다. 특정한 모터토크를 제공하는 d축과 q축 전류의 다양한 조합이 존재한다. 효율 최적화의 목적은 정상상태에서 최소 손실을 제공하는 d축과 q축 전류의 조합을 찾는 것이며, 제안된 제어기의 제어 성능은 다양한 동작조건의 분석을 통해 평가되었다. 분석된 결과는 제안된 알고리즘의 타당성을 입증한다.

유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구 (Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive)

  • 강성준;고재섭;최정식;장미금;백정우;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

소프트 컴퓨팅에 의한 지능형 주행 판단 시스템 (A Judgment System for Intelligent Movement Using Soft Computing)

  • 최우경;서재용;김성현;유성욱;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.544-549
    • /
    • 2006
  • 본 논문은 인간의 보조 역할을 하기 위해 자율적인 명령을 내리고 사용자가 직접 제어할 수 있는 지능형 주행 판단 시스템(Judgment System for Intelligent Movement; JSIM)에 대한 연구이다. 본 논문에서는 제어 대상은 이동 로봇으로 한정한다. 이동 로봇은 지능형 주행 판단 모듈을 휴대한 사용자에게 영상정보와 초음파 센서 정보를 제공하고 가이드 역할을 수행한다. 그리고 PDA와 센서박스로 구성된 지능형 주행 판단 시스템은 이동로봇으로부터 얻은 정보와 사용자 명령을 입력으로 사용하는 소프트 컴퓨팅 기법을 이용하여 이동로봇의 속도와 방향을 결정하고 다양한 기능을 수행하도록 로봇을 원격으로 제어한다. 본 논문에서는 몸에 착용하고 주변장치들과 통신을 하며 지능적 판단을 할 수 있는 지능형 주행 판단시스템을 구성하고 실제 환경에서 지능적 판단 알고리즘 적용과 이동로봇을 제어하는 시스템을 구현하여 제안한 시스템의 실현 가능성을 검증한다. 지능 알고리즘은 계층적 퍼지 구조와 신경망을 융합한 구조이다.

유비쿼터스 환경에서 지능 에이전트를 이용한 최적 시스템 구성 (An Optimal System Configuration Using Intelligent Agent on Ubiquitous Environment)

  • 김두완;노은영;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.567-572
    • /
    • 2005
  • 최근 컴퓨터의 소형화와 인터넷의 대중화와 함께 유비쿼터스 컴퓨팅도 많은 주목을 받고 있다. 언제 어디서나 원하는 서비스를 제한 없이 받을 수 있는 유비쿼터스 시대가 도래하면서 유비쿼터스 환경을 어떻게 제시하고, 어떤 서비스와 이용 방법을 사용자에게 어떻게 제공할 것인지가 중요해 지고 있다. 본 논문에서는 유비쿼터스 환경에서 지능 에이전트를 사용하여 사용자의 목적에 가장 적합한 장치가 구성할 수 있도록 하는 방법을 제안하였다. 검색 에이전트가 주변 장치들을 검색하여 기능별 목록을 작성하고 서버로 전송하면 서버는 전송 받은 정보를 지능 시스템을 통하여 학습하게 된다. 즉, 사용자가 목록에 따라 언어 항으로 작업 정보를 입력하면 서버가 작업 환경에 적합한 시스템을 선택하고, IP 어드레스를 이용하여 시스템을 구성하도록 하였다. 이것을 응용 예를 통하여 구현하고 실험을 통해 확인하였다.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

머신러닝 기반 효과적인 가뭄예측 (Effective Drought Prediction Based on Machine Learning)

  • 김교식;유재환;김병현;한건연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

의사결정트리 기법을 이용한 터널 보조공법 선정방안 연구 (A Study on the Effective Selection of Tunnel Reinforcement Methods using Decision Tree Technique)

  • 김종규;사공명;이준석;이용주
    • 대한토목학회논문집
    • /
    • 제26권4C호
    • /
    • pp.255-264
    • /
    • 2006
  • 터널 시공시 지반상황이 불량하거나 불확실한 지질정보로 인한 붕락사고를 방지하기 위하여 지보재와 병용하여 터널보조공법을 사용한다. 현재 보조공법에 관련된 전문가 시스템은 인공신경망, 퍼지추론 등의 연구가 진행되었고 터널 기술자에게 보조공법을 결정하는데 많은 도움을 주고 있는 상황이나 보조공법을 결정하는데 있어 정량적인 평가항목을 정하는데 어려움이 많은 것으로 파악되고 있다. 따라서, 본 연구에서는 사회과학, 의료, 금융, 농업 등 다양한 분야에 걸쳐 데이터분석에 이용되는 데이터마이닝 기법을 공학분야에 적용시켜 보조공법 설계자료를 바탕으로 보조공법의 의사결정 규칙을 추론하고 PDA를 적용한 전문가 시스템을 구축하였다.