저항 점 용접은 1930년대에 Thomson에 의해 방법이 제안된 이후로 자동차, 전자, 항공기, 철도산업등에서 박판 금속(sheet metal)의 접합에 가장 널리 사용되고 있는 공정이다. 특히 자동차 차체와 같이 대부분 박판으로 구성되는 구조물에서는 저항 점 용접의 사용 범위가 매우 넓기 때문에 자동차 산업에서는 가장 기본적인 근본 기술 중의 하나로 인식되고 있다. 보통 자동차 한대를 생산하는데 소요되는 저항 점 용접 타점은 3000~4000개 정도로 자동차 차체 용접 공정의 대부분을 차지하고 있다. 또한 로봇과 연동된 자동화 공정으로 적용되고 있다. 최근의 자동차 차체를 구성하는 금속 재료가 자동차의 경량화, 친화경 소재의 사용자의 요구로 인해 새로운 강판이 사용된다. 자동차의 연비 향상을 위해서 다른 방법보다 자동차의 무게를 감소시키는 것이 가장 효율적이고, 쉽기 때문에 고장력 강판의 사용이 급속하게 증가하고 있다. 뿐만 아니라 차제의 부식성, 내마모성 향상을 위해 도금 처리된 강판의 사용도 활발하게 이루어지고 있다. 최근에 도장 공정 감소를 위해 도금 처리위에 도료 착색을 용이하게 하는 도료의 일부를 금속 표면에 처리된 강판의 개발도 진행되는 등 금속 소재의 변화가 다양하게 진행되고 있다. 이러한 새로운 강종은 기존의 AC 용접이나 DC 용접으로는 용접성 확보에 어려움을 가지고 있어, 새로운 저항 점 용접 공정의 연구 개발이 필요하다. 본 연구에서는 저항 점 용접 공정의 개선을 위해서 인버터 저항 점 용접기에서 용접 공정 중 전류를 제어하기 위한 효율적인 제어기 개발 방법과 개발된 제어기를 바탕으로 용접 중에 용접부의 품질을 예측하여, 용접 전류 및 가압력을 실시간 제어하여 안정적인 용접부의 품질을 갖질 수 있는 지능형 저항 점 용접기의 적응 제어기를 개발하는데 있다.
Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.
The purpose of this paper is to classify VOC gases by emulating the characteristics found in biological olfaction. For this purpose, we propose new signal processing method based a polymeric chemical sensor array consisting of 4096 sensors which is created by NEUROCHEM project. To remove unstable sensors generated in the manufacturing process of very large scaled chemical sensor array, we used discrete wavelet transformation and cosine similarity. And, to remove the supernumerary redundancy, we proposed the method of selecting candidates of representative sensor representing sensors with similar features by Fuzzy c-means algorithm. In addition, we proposed an improved algorithm for selecting representative sensors among candidates of representative sensors to better enhance classification ability. However, Classification for very large scaled sensor array has a great deal of time in process of learning because many sensors are used for learning though a redundancy is removed. Throughout experimental trials for classification, we confirmed the proposed method have an outstanding classification ability, at transient state as well as steady state.
SynRM 효율최적화 제어는 다른 교류전동기에 비해 SynRM의 효율이 낮기 때문에 에너지 절약과 환경보존의 관점에서 매우 중요하다. 본 논문에서는 다중 AFLC를 이용하여 철손을 고려한 SynRM의 새로운 효율 최적화 제어를 제안하였다. 최대효율에서 SynRM을 구동하기 위해 토크전류와 여자전류사이의 최적전류비를 분석하여 구한다. 본 논문에서는 동손과 철손을 최소로 하는 SynRM의 효율 최적화 제어를 제안하였다. 특정한 모터토크를 제공하는 d축과 q축 전류의 다양한 조합이 존재한다. 효율 최적화의 목적은 정상상태에서 최소 손실을 제공하는 d축과 q축 전류의 조합을 찾는 것이며, 제안된 제어기의 제어 성능은 다양한 동작조건의 분석을 통해 평가되었다. 분석된 결과는 제안된 알고리즘의 타당성을 입증한다.
In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.
본 논문은 인간의 보조 역할을 하기 위해 자율적인 명령을 내리고 사용자가 직접 제어할 수 있는 지능형 주행 판단 시스템(Judgment System for Intelligent Movement; JSIM)에 대한 연구이다. 본 논문에서는 제어 대상은 이동 로봇으로 한정한다. 이동 로봇은 지능형 주행 판단 모듈을 휴대한 사용자에게 영상정보와 초음파 센서 정보를 제공하고 가이드 역할을 수행한다. 그리고 PDA와 센서박스로 구성된 지능형 주행 판단 시스템은 이동로봇으로부터 얻은 정보와 사용자 명령을 입력으로 사용하는 소프트 컴퓨팅 기법을 이용하여 이동로봇의 속도와 방향을 결정하고 다양한 기능을 수행하도록 로봇을 원격으로 제어한다. 본 논문에서는 몸에 착용하고 주변장치들과 통신을 하며 지능적 판단을 할 수 있는 지능형 주행 판단시스템을 구성하고 실제 환경에서 지능적 판단 알고리즘 적용과 이동로봇을 제어하는 시스템을 구현하여 제안한 시스템의 실현 가능성을 검증한다. 지능 알고리즘은 계층적 퍼지 구조와 신경망을 융합한 구조이다.
최근 컴퓨터의 소형화와 인터넷의 대중화와 함께 유비쿼터스 컴퓨팅도 많은 주목을 받고 있다. 언제 어디서나 원하는 서비스를 제한 없이 받을 수 있는 유비쿼터스 시대가 도래하면서 유비쿼터스 환경을 어떻게 제시하고, 어떤 서비스와 이용 방법을 사용자에게 어떻게 제공할 것인지가 중요해 지고 있다. 본 논문에서는 유비쿼터스 환경에서 지능 에이전트를 사용하여 사용자의 목적에 가장 적합한 장치가 구성할 수 있도록 하는 방법을 제안하였다. 검색 에이전트가 주변 장치들을 검색하여 기능별 목록을 작성하고 서버로 전송하면 서버는 전송 받은 정보를 지능 시스템을 통하여 학습하게 된다. 즉, 사용자가 목록에 따라 언어 항으로 작업 정보를 입력하면 서버가 작업 환경에 적합한 시스템을 선택하고, IP 어드레스를 이용하여 시스템을 구성하도록 하였다. 이것을 응용 예를 통하여 구현하고 실험을 통해 확인하였다.
Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
Nuclear Engineering and Technology
/
제54권2호
/
pp.608-616
/
2022
Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.
장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.
터널 시공시 지반상황이 불량하거나 불확실한 지질정보로 인한 붕락사고를 방지하기 위하여 지보재와 병용하여 터널보조공법을 사용한다. 현재 보조공법에 관련된 전문가 시스템은 인공신경망, 퍼지추론 등의 연구가 진행되었고 터널 기술자에게 보조공법을 결정하는데 많은 도움을 주고 있는 상황이나 보조공법을 결정하는데 있어 정량적인 평가항목을 정하는데 어려움이 많은 것으로 파악되고 있다. 따라서, 본 연구에서는 사회과학, 의료, 금융, 농업 등 다양한 분야에 걸쳐 데이터분석에 이용되는 데이터마이닝 기법을 공학분야에 적용시켜 보조공법 설계자료를 바탕으로 보조공법의 의사결정 규칙을 추론하고 PDA를 적용한 전문가 시스템을 구축하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.