실제 구조물에 있어 확률, 통계 및 이론으로 구해진 랜덤성을 갖는 객관적 불확실성뿐만 아니라 설계자의 경험이나 공학적 판단에 의해 주관적으로 평가되는 인간오차나 시공중의 과오 또는 구조설계에 미치는 사회적, 정치적 및 경제적 요청 등의 퍼지성을 갖는 주관적 불확실성이 존재하기 때문에 현실적으로 랜덤성과 퍼지성을 동시에 고려한 실뢰성평가 즉, 안전성평가에 대한 퍼지이론의 도입이 필수 불가결하다. 따라서 본 연구에서는 기존 구조물의 객관적·주관적 불확실성을 동시에 고려한 신뢰성해석방법으로 베이즈의 의사결정이론에 퍼지이론을 병합한 퍼지-베이즈 신뢰성해석 알고리즘을 개발하여 건축구조물의 신뢰성평가 및 안전성평가에 적용하여 분석하였다.
무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선 네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식은 준비 단계와 실시간 측위 단계로 구성되고 정확한 위치 측정을 위해 보다 효율적이고 정확해야 한다. 본 논문에서는 Fingerprinting 방식에 대한 베이지안 알고리즘으로 강력한 통계적 학습 이론인 베이지안 학습을 결합한 퍼지 군집화를 이용하여 실내 측위를 결정하는 알고리즘을 제안하였다.
The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.
자조의 표현에서 군집화는 주어진 데이터를 서로 유사한 개체들끼리 몇 개의 집단으로 묶는 작업을 수행한다. 군집화의 유사도 결정 측도는 맡은 연구들에서 매우 다양한 것들이 사용되었다. 하지만 군집화 결과의 성능 측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고, 애매한 경우가 많다. 퍼지 군집화는 이러한 주관적인 군집화 문제에 있어서 객관성 있는 군집 결정 방안을 제시하여 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 차원 축소기법의 하나인 주성분 분석과 강력한 통계적 학습 이론인 베이지안 학습을 결합한 군집화 모형을 제안하여, 객관적인 퍼지 군집화를 수행하였다. 제안 알고리즘의 성능 평가를 위하여 UCI Machine Loaming Repository의 Iris와 Glass Identification 데이터를 이용한 실험 결과를 제시하였다.
The ubiquitous environment is to support people in their everyday life in an inconspicuous and unobtrusive way. This requires that information of the person and her preferences, liking, and habits are available in the ubiquitous system. In this paper, we propose the context aware system that can provide the tailored information service for user in ubiquitous computing environment. The system architecture is composed of 4 domain models that can perform some pre-defined tasks independently. And we suggest the hybrid algorithm combined with fuzzy and Bayesian network to reason what information is suitable for user environment. Finally, we apply to agent based RGA(Research Guide Assistant).
It has been widely accepted that expert systems must reason from multiple sources of information that is to some degree evidential - uncertain, imprecise, and occasionally inaccurate - called evidential information. Evidence theory (Dempster/Shafet theory) provides one of the most general framework for representing evidential information compared to its alternatives such as Bayesian theory or fuzzy set theory. Many expert system applications require evidence to be specified in the continuous domain - such as time, distance, or sensor measurements. However, the existing evidence theory does not provide an effective approach for dealing with evidence about continuous variables. As an extension to Strat's pioneeiring work, this paper provides a new combination rule, a new method for mass function transffrmation, and a new method for rendering joint mass fuctions which are of great utility in evidence theory in the continuous domain.
본 논문은 퍼지지식베이스에서 러프 집합과 요인공간이론을 적용하여 최소 결정규칙 생성과 근사추론 연산을 수행하는 두 개의 알고리듬을 제안한다. 최소 결정규칙의 생성은 속성요인에 관련한 상관분석과 베이지안 정리를 응용한 데이터의 분류기법과 리덕트에 의해 수행된다. 이 결정규칙으로 이루어진 최소지식 베이스의 탐색공간에서 소속함수와 t-norm의 합성 연산을 정의한 근사추론 방식에 의해 특정 객체를 검색한다. 본 연구의 러프와 퍼지연산 모듈을 수행하는 제안 알고리듬 기법을 객체및 속성수를 증가시키는 시뮬레이션을 통해 다른 검색이론 및 합성연산 방식과 비교하였다. 그 결과 다른 제 방법보다 본 연구에서 제안하는 기법이 특정 객체를 추출하기 위한 검색연산 시간에 있어 보다 빠르게 검색됨을 입증하였다.
There has been considerable research recently on uncertainty handling in the fields of artificial intelligence and knowledge-based system. Various numerical and non-numerical methods have been proposed for representing and propagating uncertainty in knowledge-based system. The Bayesian method, the Dempster-Shafer's Evidence Theory, the Certainty Factor model and the Fuzzy Set Theory are most frequently appeared in the knowledge-based system. Each of these four methods views uncertainty from a different perspective and propagates it differently. There is no single method which can handle uncertainty properly in all kinds of knowledge-based systems' domain. Therefore a knowledge-based system will work more effectively when the uncertainty handling method in the system fits to the system's environment. This paper proposed a framework for selecting proper uncertainty handling methods in knowledge-based system with respect to characteristics of problem domain and cognitive styles of experts. A schema with strategic/operational and unstructured/structured classification is employed to differenciate domain. And a schema with systematic/intuitive and preceptive/receptive classification is employed to differenciate experts' cognitive style. The characteristics of uncertainty handling methods are compared with characteristics of problem domains and cognitive styles respectively. Then a proper uncertainty handling method is proposed for each category.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.