Abstract
In data representation, the clustering performs a grouping process which combines given data into some similar clusters. The various similarity measures have been used in many researches. But, the validity of clustering results is subjective and ambiguous, because of difficulty and shortage about objective criterion of clustering. The fuzzy clustering provides a good method for subjective clustering problems. It performs clustering through the similarity matrix which has fuzzy membership value for assigning each object. In this paper, for objective fuzzy clustering, the clustering algorithm which joins principal components analysis as a dimension reduction model with bayesian learning as a statistical learning theory. For performance evaluation of proposed algorithm, Iris and Glass identification data from UCI Machine Learning repository are used. The experimental results shows a happy outcome of proposed model.
자조의 표현에서 군집화는 주어진 데이터를 서로 유사한 개체들끼리 몇 개의 집단으로 묶는 작업을 수행한다. 군집화의 유사도 결정 측도는 맡은 연구들에서 매우 다양한 것들이 사용되었다. 하지만 군집화 결과의 성능 측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고, 애매한 경우가 많다. 퍼지 군집화는 이러한 주관적인 군집화 문제에 있어서 객관성 있는 군집 결정 방안을 제시하여 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 차원 축소기법의 하나인 주성분 분석과 강력한 통계적 학습 이론인 베이지안 학습을 결합한 군집화 모형을 제안하여, 객관적인 퍼지 군집화를 수행하였다. 제안 알고리즘의 성능 평가를 위하여 UCI Machine Loaming Repository의 Iris와 Glass Identification 데이터를 이용한 실험 결과를 제시하였다.