• Title/Summary/Keyword: Fuzzy regression model

Search Result 154, Processing Time 0.021 seconds

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method (퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구)

  • Baek, Jin-Yeol;Lee, In-Tae;Oh, Sung-Kwun;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.911-917
    • /
    • 2008
  • In this paper. we introduce and investigate new architectures and comprehensive design methodologies of intelligent dimming converter and evaluate the proposed model and the system through a series of numeric experiments. The intelligent dimming converter is developed by using the regression polynomial fuzzy model. In this paper, we put emphasis on the design of electronic ballast based on intelligent dimming converter and the energy saving according to the day-light and the user setting by applying the intelligent model to a fluorescent lamp. We show the superiority of the proposed intelligent dimming converter through the evaluation of performance with conventional electronic ballast by applying the intelligent model to real systems.

Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station (AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법)

  • Hyeon, Byeongyong;Lee, Yonghee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

Comparison and analysis of data-derived stage prediction models (자료 지향형 수위예측 모형의 비교 분석)

  • Choi, Seung-Yong;Han, Kun-Yeun;Choi, Hyun-Gu
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.547-565
    • /
    • 2011
  • Different types of schemes have been used in stage prediction involving conceptual and physical models. Nevertheless, none of these schemes can be considered as a single superior model. To overcome disadvantages of existing physics based rainfall-runoff models for stage predicting because of the complexity of the hydrological process, recently the data-derived models has been widely adopted for predicting flood stage. The objective of this study is to evaluate model performance for stage prediction of the Neuro-Fuzzy and regression analysis stage prediction models in these data-derived methods. The proposed models are applied to the Wangsukcheon in Han river watershed. To evaluate the performance of the proposed models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient(NSEC), mean absolute error(MAE), adjusted coefficient of determination($R^{*2}$). The results show that the Neuro-Fuzzy stage prediction model can carry out the river flood stage prediction more accurately than the regression analysis stage prediction model. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Modeling of Photovoltaic Power Systems using Clustering Algorithm and Modular Networks (군집화 알고리즘 및 모듈라 네트워크를 이용한 태양광 발전 시스템 모델링)

  • Lee, Chang-Sung;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.108-113
    • /
    • 2016
  • The real-world problems usually show nonlinear and multi-variate characteristics, so it is difficult to establish concrete mathematical models for them. Thus, it is common to practice data-driven modeling techniques in these cases. Among them, most widely adopted techniques are regression model and intelligent model such as neural networks. Regression model has drawback showing lower performance when much non-linearity exists between input and output data. Intelligent model has been shown its superiority to the linear model due to ability capable of effectively estimate desired output in cases of both linear and nonlinear problem. This paper proposes modeling method of daily photovoltaic power systems using ELM(Extreme Learning Machine) based modular networks. The proposed method uses sub-model by fuzzy clustering rather than using a single model. Each sub-model is implemented by ELM. To show the effectiveness of the proposed method, we performed various experiments by dataset acquired during 2014 in real-plant.

Comparative Analysis of Models used to Predict the Temperature Decreases in the Steel Making Process using Soft Computing Techniques (철강 생산 공정에서 Soft Computing 기술을 이용한 온도하락 예측 모형의 비교 연구)

  • Kim, Jong-Han;Seong, Deok-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2007
  • This paper is to establish an appropriate model for predicting the temperature decreases in the batch transferred from the refining process to the caster in steel-making companies. Mathematical modeling of the temperature decreases between the processes is difficult, since the reaction mechanism by which the temperature changes in a molten steel batch is dynamic, uncertain and complex. Three soft computing techniques are examined using the same data, namely the multiple regression, fuzzy regression, and neural net (NN) models. To compare the accuracy of these three models, a limited number of input variables are selected from those variables significantly affecting the temperature decrease. The results show that the difference in accuracy between the three models is not statistically significant. Nonetheless, the NN model is recommended because of its adaptive ability and robustness. The method presented in this paper allows the temperature decrease to be predicted without requiring any precise metallurgical knowledge.

Design of Incremental Model by Linear Regression and Local RBFNs (선형회귀와 국부적인 RBFN에 의한 점진적인 모델의 설계)

  • Lee, Myung-Won;Kwak, Keun-Chang
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.471-473
    • /
    • 2010
  • 본 논문은 선형회귀(LR: Linear Regression)와 국부적인 방사기저함수 네트워크(RBFN: Radial Basis Function Networks)를 결합한 점진적인 모델(incremental model)의 설계와 관련되어진다. 전형적인 RBFN에 의한 모델링과는 달리, 제안된 방법의 근본적인 원리는 두 단계에 의해 고려되어진다. 첫째, 전체 모델의 설계과정에서 전역적인 모델로써 선형회귀에 의해 데이터의 선형부분을 구축한다. 다음으로, 모델링 오차는 오차가 존재하는 국부적인 공간에서 RBFN에 의해 보상되어진다. 여기서, 오차의 분포로부터 RBFN을 설계하기 위해 컨텍스트 기반 퍼지 클러스터링(CFC: Context-based Fuzzy Clustering)를 통해 정보입자의 형태로 구축되어진다. 실험은 자동차 mpg 연료소비량 예측과 부동산 가격예측문제를 통해 제안된 방법의 우수성을 증명한다.

Application of the ANFIS model in deflection prediction of concrete deep beam

  • Mohammadhassani, Mohammad;Nezamabadi-Pour, Hossein;Jumaat, MohdZamin;Jameel, Mohammed;Hakim, S.J.S.;Zargar, Majid
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.323-336
    • /
    • 2013
  • With the ongoing development in the computer science areas of artificial intelligence and computational intelligence, researchers are able to apply them successfully in the construction industry. Given the complexities indeep beam behaviour and the difficulties in accurate evaluation of its deflection, the current study has employed the Adaptive Network-based Fuzzy Inference System (ANFIS) as one of the modelling tools to predict deflection for high strength self compacting concrete (HSSCC) deep beams. In this study, about 3668measured data on eight HSSCC deep beams are considered. Effective input data and the corresponding deflection as output data were recorded at all loading stages up to failure load for all tested deep beams. The results of ANFIS modelling and the classical linear regression were compared and concluded that the ANFIS results are highly accurate, precise and satisfactory.