• Title/Summary/Keyword: Fuzzy model

Search Result 2,834, Processing Time 0.038 seconds

Fuzzy time-series model of fuzzy number observations (퍼지 넘버 연산에 의한 퍼지 시계열 모형)

  • Hong, Dug-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.139-144
    • /
    • 2000
  • Recently, a homogeneous fuzzy time series model was proposed by means of defining some new operations on fuzzy numbers. In this paper, we consider expanding the results to the nonhomogeneous fuzzy time series and the general fuzzy time series using Tw, the weakest t-norm, based algebraic fuzzy operations.

  • PDF

Backing up Control of a Truck-Trailer using TSK Fuzzy System (TSK 퍼지시스템을 이용한 트럭-트레일러의 후진 제어)

  • 김종화;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.133-136
    • /
    • 2003
  • This paper presents a fuzzy control scheme for backing up control of Truck-Trailer, which is nonlinear and unstable by using TSK(Takagi-Sugeno-kang) fuzzy system. The nonlinear system of Truck-Trailer was expressed by using TSK fuzzy model, and the TSK fuzzy controller was designed from TSK fuzzy model. The usefulness of the proposed algorithm for backing up truck-trailer is certificated by the computer simulations.

  • PDF

Fuzzy system identification and modification of fuzzy relation matrix (퍼지 제어규칙의 추정 및 퍼지 연관행렬의 수정화)

  • 이태호;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.567-572
    • /
    • 1991
  • This paper proposes an algorithm of fuzzy model modification which improves fuzzy relation matrix for multi-input/single output dynamic systems. Zadeh's possibility distribution plays an important role in the proposed algorithm and in the use of fuzzy models which are constructed by the proposed algorithm. The required computer capacity and time for implementing the proposed algorithm and resulting models are significantly reduced by introducing the concept of the referential fuzzy sets. A nonlinear system is given to show that the proposed algorithm can provide the fuzzy model with satisfactory accuracy.

  • PDF

A Study on Fuzzy Ranking Model based on User Preference (사용자 선호도 기반의 퍼지 랭킹모델에 관한 연구)

  • Kim Dae-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.94-95
    • /
    • 2006
  • A great deal of research has been made to model the vagueness and uncertainty in information retrieval. One such research is fuzzy ranking models, which have been showing their superior performance in handling the uncertainty involved in the retrieval process. In this study we develop a new fuzzy ranking model based on the user preference. Through the experiments on the TREC-2 collection of Wall Street Journal documents, we show that the proposed method outperforms the conventional fuzzy ranking models.

  • PDF

A Study on Fuzzy Ranking Model based on User Preference

  • Kim Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.326-331
    • /
    • 2006
  • A great deal of research has been made to model the vagueness and uncertainty in information retrieval. One such research is fuzzy ranking models, which have been showing their superior performance in handling the uncertainty involved in the retrieval process. In this study we develop a new fuzzy ranking model based on the user preference. Through the experiments on the TREC-2 collection of Wall Street Journal documents, we show that the proposed method outperforms the conventional fuzzy ranking models.

Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations (가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론)

  • Lee, Moo-Eun;Lee, Dong-Eun;Cho, Sang-Yeop
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

A Study on the Fuzzy ELDC of Composite Power System Based on Probabilistic and Fuzzy Set Theories

  • Park, Jaeseok;Kim, Hongsik;Seungpil Moon;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.3
    • /
    • pp.95-101
    • /
    • 2002
  • This paper illustrates a new fuzzy effective load model for probabilistic and fuzzy production cost simulation of the load point of the composite power system. A model for reliability evaluation of a transmission system using the fuzzy set theory is proposed for considering the flexibility or ambiguity of capacity limitation and overload of transmission lines, which are subjective matter characteristics. A conventional probabilistic approach was also used to model the uncertainties related to the objective matters for forced outage rates of generators and transmission lines in the new model. The methodology is formulated in order to consider the flexibility or ambiguity of load forecasting as well as capacity limitation and overload of transmission lines. It is expected that the Fuzzy CMELDC (CoMposite power system Effective Load Duration Curve) proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems in a competitive environment in the future. The characteristics of this new model are illustrated by some case studies of a very simple test system.

Fuzzy inference system and Its Optimization according to partition of Fuzzy input space (퍼지 입력 공간 분할애 따른 퍼지 추론과 이의 최적화)

  • Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.657-659
    • /
    • 1998
  • In order to optimize fuzzy modeling of nonlinear system, we proposed a optimal fuzzy model according to the characteristic of I/O relationship, HCM method, the genetic algorithm, and the objective function with weighting factor. A conventional fuzzy model has difficulty in definition of membership function. In order to solve its problem, the premise structure of the proposed fuzzy model is selected by both the partition of input space and the analysis of input-output relationship using the clustering algorithm. The premise parameters of the fuzzy model are optimized respectively by the genetic algorithm and the consequence parameters of the fuzzy model are identified by the standard least square method. Also, the objective function with weighting factor is proposed to achieve a balance between the performance results for the training and testing data.

  • PDF

A Study on the Demand Forecasting Control using A Composite Fuzzy Model (복합 퍼지모델을 이용한 디맨드 예측 제어에 관한 연구)

  • Kim, Chang-Il;Seong, Gi-Cheol;Yu, In-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.417-424
    • /
    • 2002
  • This paper presents an industrial peak load management system for the peak demand control. Kohonen neural network and wavelet transform based techniques are adopted for industrial peak load forecasting that will be used as input data of the peak demand control. Firstly, one year of historical load data of a steel company were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are applied with Biorthogonal 1.3 mother wavelet in order to forecast the peak load of one minute ahead. In addition, for the peak demand control, composite fuzzy model is proposed and implemented in this work. The results are compared with those of conventional model, fuzzy model and composite model, respectively. The outcome of the study clearly indicates that the composite fuzzy model approach can be used as an attractive and effective means of the peak demand control.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • 이재하;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF