• Title/Summary/Keyword: Fuzzy model

Search Result 2,834, Processing Time 0.035 seconds

Vehicle Trajectory Control using Fuzzy Logic Controller (퍼지논리제어기를 이용한 차량의 궤적제어)

  • 이승종;조현욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization (입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF

A modified strategy for DNA coding based genetic algorithm and its experiment

  • Kyungwon Jang;Taechon Ahn;Lee, Dongyoon;Kim, Seonik;Jinhyun Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.1-70
    • /
    • 2002
  • In the fuzzy applications and theories, it is very important to consider how to design the optimal fuzzy model from short training data, in order to construct the reasonable fuzzy model for identifying the practical process. There are several concerns to be confirmed for efficient fuzzy model design. One of concern is the optimization problem of the fuzzy model. In various applications, the genetic algorithm is widely applied to obtain optimal fuzzy model and other cases that adopt evolutionary mechanism of the nature. If we use natural selection and multiplication operation of the genetic algorithm, early convergence to local minimum can be occurred. In other word, we can find only optimum...

  • PDF

Approximation Method for TS(Takagi-Sugeno) Fuzzy Model in V-type Scope Using Rational Bezier Curves (TS(Takagi-Sugeno) Fuzzy Model V-type구간 Rational Bezier Curves를 이용한 Approximation개선에 관한 연구)

  • 나홍렬;이홍규;홍정화;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.17-20
    • /
    • 2002
  • This paper proposes a new 75 fuzzy model approximation method which reduces error in nonlinear fuzzy model approximation over the V-type decision rules. Employing rational Bezier curves used in computer graphics to represent curves or surfaces, the proposed method approximates the decision rule by constructing a tractable linear equation in the highly non-linear fuzzy rule interval. This algorithm is applied to the self-adjusting air cushion for spinal cord injury patients to automatically distribute the patient's weight evenly and balanced to prevent decubitus. The simulation results indicate that the performance of the proposed method is bettor than that of the conventional TS Fuzzy model in terms of error and stability.

  • PDF

Online Fuzzy Modelling of Nonlinear Systems Using a Genetic Algorithm (유전알고리즘을 이용한 비선형 시스템의 온라인 퍼지 모델링)

  • 이현식;오정환;신위재;김종화;진강규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.80-87
    • /
    • 1998
  • This paper presents and online scheme for fuzzy modelling of nonlinear systems, based on the model adjustment technique and the genetic algorithm technique. The fuzzy model is characterized by fuzzy "if-then" rules which represent locally linear input-output relations whose consequence parts are defined as subsystems of a nonlinear sysem. The discrete-time model for each subsystem is obtained to deal with initalization and unmeasurable signal problems in online estimation and the final output of the fuzzy model is computed from the outputs of the discrete-time models. Then, the parameters of both the premise and consequence parts of the fuzzy model are adjusted by a genetic algorithm. A set of simulation works is carried out to demonstrate the effectiveness of the proposed method.ed method.

  • PDF

Fuzzy Modeling of a surface Deformation for Virtual Environment

  • Park, Min-Kee;Yang, Hoon-Gee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.198-203
    • /
    • 2002
  • In this paper, a 3D model of the surface deformation is created in virtual environment. A proposed method is based on the fuzzy model and it is enough that only one rule set is added to the fuzzy model to model a surface deformation. Furthermore, the designer can easily determine which parameters should be used and how they should be changed in order to obtain the shapes as required. The proposed method is, thus, a simple, but effective technique that can also be used in practical applications. The results of the computer simulation are also given to demonstrate the validity of the proposed algorithm.

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.

Hull Form Generation by Using Fuzzy Model

  • Lee, Yeon-Seung-;Jeong, Seong-Jae;Kim, Su-Young-;Geuntaek-Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1234-1237
    • /
    • 1993
  • This paper discusses the hull form generation from fuzzy model constructed with actual ship data using fuzzy concept. SAC, which is the most important factor in the hull form generation, is expressed by a fuzzy model describing the relationships among design parameters, which have a great influence on SAC, through model identification process with the actual ship data and design parameters. Then, we can infer the SAC of an aimed ship through the process of fuzzy inference and decide the offset of a front view by making the fuzzy model between SAC and offset as well. In conclusion, this paper makes a step forward from the geometrical definition, which has been used for hull form generation so far, to direct mathematical formulae about the relationship between design parameters and offset. So, if the design parameters are given, we can generate the hull form taking such properties into account.

  • PDF

Fuzzy Control Using A Modified Fuzzy Modelling (개선된 퍼지 모형화 기법에 의한 퍼지 제어)

  • Lee, Sang-Yong;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.349-352
    • /
    • 1991
  • Fuzzy modelling is a useful method when the variation of plant dynamics is large. In the fuzzy modelling by parameter identification, a new method is proposed in the part of premise parameters identification and in expanding MISO system into MIMO system. Using the proposed method, a fuzzy model of the drum boiler of the thermal power plant can be derived. In addition, feedwater control of the drum by fuzzy controller using the fuzzy model, is simulated.

  • PDF