• Title/Summary/Keyword: Fuzzy measure

Search Result 455, Processing Time 0.025 seconds

A Study on Fuzzy Ranking Model based on User Preference (사용자 선호도 기반의 퍼지 랭킹모델에 관한 연구)

  • Kim Dae-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.94-95
    • /
    • 2006
  • A great deal of research has been made to model the vagueness and uncertainty in information retrieval. One such research is fuzzy ranking models, which have been showing their superior performance in handling the uncertainty involved in the retrieval process. In this study we develop a new fuzzy ranking model based on the user preference. Through the experiments on the TREC-2 collection of Wall Street Journal documents, we show that the proposed method outperforms the conventional fuzzy ranking models.

  • PDF

A Study on Fuzzy Ranking Model based on User Preference

  • Kim Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.326-331
    • /
    • 2006
  • A great deal of research has been made to model the vagueness and uncertainty in information retrieval. One such research is fuzzy ranking models, which have been showing their superior performance in handling the uncertainty involved in the retrieval process. In this study we develop a new fuzzy ranking model based on the user preference. Through the experiments on the TREC-2 collection of Wall Street Journal documents, we show that the proposed method outperforms the conventional fuzzy ranking models.

Fuzzy Sets Application to System Reliability Analysis (시스템 신뢰도 분석에서의 퍼지집합 응용)

  • Yun, Won-Young;Heo, Gil-Hwan
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.67-78
    • /
    • 1993
  • In this paper, we deal with the application of the fuzzy sets theory to evaluate and estimate the system reliability under the fault tree analysis. We formulate the uncertainty of component reliability to fuzzy sets, and propose a procedure for obtaining the system reliability in case the system structure is described by fault tree. An importance measure of each component is proposed. Computer program for fuzzy fault tree analysis(FFTA) is developed using C language to obtain the system reliability and the component‘s fuzzy importance.

  • PDF

Reliability Computation of Neuro-Fuzzy Models : A Comparative Study (뉴로-퍼지 모델의 신뢰도 계산 : 비교 연구)

  • 심현정;박래정;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2001
  • This paper reviews three methods to compute a pointwise confidence interval of neuro-fuzzy models and compares their estimation perfonnanee through simulations. The eOITl.putation methods under consideration include stacked generalization using cross-validation, predictive error bar in regressive models, and local reliability measure for the networks employing a local representation scheme. These methods implemented on the neuro-fuzzy models are applied to the problems of simple function approximation and chaotic time series prediction. The results of reliability estimation are compared both quantitatively and qualitatively.

  • PDF

Logical Consistency in Risk Assessment using the Korean Fuzzy Linguistic Variables (한국어 퍼지 언어변수를 이용한 리스크 평가의 논리적 일관성)

  • Lim, Hyeon-Kyo;Byun, Sanghun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.120-125
    • /
    • 2016
  • Usually, a risk can be expressed as a product of likelihood and consequence of a hazard factor. Therefore, conventional risk assessment is carried out by frequency analysis and severity analysis, in turns. However, it is well known that intuitive thinking is another excellent way of thinking of human beings. This study aimed to confirm whether there exist any difference in risk assessment results derived by two different procedures - intuitive and analytical. Thus, the present study showed 10 different illustrations to 30 undergraduate students. Their responses were organized as fuzzy membership functions, and summarized as risk assessments, and compared. The results were also verified with the help of statistical hypothesis testing, which showed no significant difference. On the contrary, however, similarity measure used in fuzzy set theory was not credible as anticipated. Many cases failed to satisfy statistical hypothesis even with similarity measure higher than 0.60 so that only a trend could be accepted. In addition, a subject showed a somewhat consistent logical discrepancy in his response, which implied the necessity of sincere analysis in fuzzy formulations.

Natural Color Recognition algorithm Based on Fuzzy Similarity Measure (퍼지 유사도 평가를 이용한 천연색상 인식 알고리듬)

  • Kim, Youn-Tae;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1123-1127
    • /
    • 2005
  • The Conventional methods of color separation in computer-based machine vision offer only weak performance because of environmental factors such as light source, camera sensitivity, and others. In this paper, we propose an improved color separation method using RGB, HLS, color coordination space, and fuzzy similarity measure. RGB consists of red, green and blue, the three primary colors of light. HLS includes hue, light and saturation, the human recognition elements of co]or. A fuzzy similarity measure was employed for evaluate the similarity among fuzzy colors with the six features of RGB and HLS.

  • PDF

Incomplete Information Recognition Using Fuzzy Integrals Aggregation: With Application to Multiple Matchers for Image Verification

  • Kim, Seong H.;M. Kamel
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.28-31
    • /
    • 2003
  • In the present work, a main purpose is to propose a fuzzy integral-based aggregation framework to complementarily combine partial information due to lack of completeness. Based on Choquet integral (CI) viewed as monotone expectation, we take into account complementary, non-interactive, and substitutive aggregations of different sources of defective information. A CI-based system representing upper, conventional, and lower expectations is designed far handling three aggregation attitudes towards uncertain information. In particular, based on Choquet integrals for belief measure, probability measure, and plausibility measure, CI$\_$bi/-, CI$\_$pr/ and CI$\_$pl/-aggregator are constructed, respectively. To illustrate a validity of proposed aggregation framework, multiple matching systems are developed by combining three simple individual template-matching systems and tested under various image variations. Finally, compared to individual matchers as well as other traditional multiple matchers in terms of an accuracy rate, it is shown that a proposed CI-aggregator system, {CI$\_$bl/-aggregator, CI$\_$pl/-aggregator, Cl$\_$pl/-aggregator}, is likely to offer a potential framework for either enhancing completeness or for resolving conflict or for reducing uncertainty of partial information.

  • PDF

Application of Similarity Measure for Fuzzy C-Means Clustering to Power System Management

  • Park, Dong-Hyuk;Ryu, Soo-Rok;Park, Hyun-Jeong;Lee, Sang-H.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • A FCM with locational price and regional information between locations are proposed in this paper. Any point in a networked system has its own values indicating the physical characteristics of that networked system and regional information at the same time. The similarity measure used for FCM in this paper is defined through the system-wide characteristic values at each point. To avoid the grouping of geometrically distant locations with similar measures, the locational information are properly considered and incorporated in the proposed similarity measure. We have verified that the proposed measure has produced proper classification of a networked system, followed by an example of a networked electricity system.

Comparison Study for similarities based on Distance Measure and Fuzzy Number (거리측도를 이용한 유사도의 구성과 퍼지 넘버를 이용한 유사도와의 비교연구)

  • Lee, Sang-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The similarity measure is derived with distance measure, and the proposed similarity measure is proved to verily the usefulness. Conventional similarity measure which is constructed through fuzzy number and Center of Gravity(COG) is introduced, furthermore two similarity measures are compared through various types of membership function.

A Study on Word Recognition Using Neural-Fuzzy Pattern Matching (뉴럴-퍼지패턴매칭에 의한 단어인식에 관한 연구)

  • 이기영;최갑석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.130-137
    • /
    • 1992
  • This paper presents the word recognition method using a neural-fuzzy pattern matching, in order to make a proper speech pattern for a spectrum sequence and to improve a recognition rate. In this method, a frequency variation is reduced by generating binary spectrum patterns through associative memory using a neural network, and a time variation is decreased by measuring the simillarity using a fuzzy pattern matching. For this method using binary spectrum patterns and logic algebraic operations to measure the simillarity, memory capacity and computation requirements are far less than those of DTW using a conventional distortion measure. To show the validity of the recognition performance for this method, word recognition experiments are carried out using 28 DDD city names and compared with DTW and a fuzzy pattern matching. The results show that our presented method is more excellent in the recognition performance than the other methods.

  • PDF